我们展示了在数字量子计算机上对量子场论非平衡动力学的模拟。作为一个代表性的例子,我们考虑 Schwinger 模型,这是一个 1+1 维 U(1) 规范理论,通过 Yukawa 型相互作用耦合到标量场理论描述的热环境。我们使用在空间晶格上离散化的 Schwinger 模型的哈密顿量公式。通过追踪热标量场,Schwinger 模型可以被视为一个开放的量子系统,其实时动力学由马尔可夫极限中的 Lindblad 方程控制。与环境的相互作用最终使系统达到热平衡。在量子布朗运动极限中,Lindblad 方程与场论 Caldeira-Leggett 方程相关。通过使用 Stinespring 膨胀定理和辅助量子比特,我们使用 IBM 的模拟器和量子设备研究了 Schwinger 模型中的非平衡动力学和热态准备。作为开放量子系统的场论的实时动力学和此处研究的热态准备与核物理和粒子物理、量子信息和宇宙学中的各种应用相关。
1. 荷兰埃因霍温理工大学建筑环境系,邮政信箱 513,邮编 5600 MB 2. 比利时鲁汶天主教大学土木工程系,Kasteelpark Arenberg 40 - bus 2447,邮编 3001 鲁汶 摘要 大涡模拟 (LES) 无疑有可能比基于雷诺平均纳维-斯托克斯 (RANS) 方法的模拟提供更准确、更可靠的结果。然而,LES 的模拟复杂度更高,计算成本也高得多。尽管过去几十年有人声称 LES 会使 RANS 过时,但 RANS 仍然广泛用于研究和工程实践。本文试图从建筑模拟的角度(无论是对于室外还是室内应用)回答为什么会出现这种情况以及这是否合理。首先,介绍了控制方程以及 LES 和 RANS 的历史简要概述。接下来,提供了一些关于 LES 与 RANS 的先前立场文件中的相关要点。鉴于它们的重要性,概述了最佳实践指南的可用性或不可用性。随后,通过建筑模拟中的五个应用领域的示例说明了为什么 RANS 仍然被频繁使用以及是否合理:行人级风舒适度、近场污染物扩散、城市热环境、建筑物的自然通风和室内气流。结果表明,答案取决于
3.A 1.A 1.A用于空调的建筑物,居住空间中的夏季和冬季手术温度范围符合CIBSE指南中规定的标准,设计了设计的环境标准(79),表1.5;或其他适当的行业标准(在建筑类型中为建筑类型设定了更高或更合适的要求或水平);或占用空间中的热环境符合B类,PPD,PMV和ISO 7730:2005附件A的表A.1中列出的本地不适。3.b对于自然通风的建筑物:3.b.i 3.B.I冬季手术温度范围占用的空间范围符合CIBSE指南中规定的标准,指南设计的环境标准,表1.5。或其他适当的行业标准(在建筑类型中为建筑类型设定了更高或更合适的要求或水平)。3.b.ii 3.b.ii建筑物旨在根据适当的以下任何标准中概述的自适应舒适方法限制过热的风险; CIBSE TM52:热舒适的极限:避免在欧洲建筑物中过热(80)或CIBSE TM59:用于评估家庭中过热风险的设计方法(81)。
摘要:地表城市热岛(Suhis)对于评估城市热环境至关重要。但是,Suhis的当前定量研究忽略了热辐射方向(TRD),这直接影响了研究精度。此外,他们无法评估不同土地利用强度对Suhis定量研究的TRD特征的影响。为了弥合这一研究差距,这项研究消除了2010 - 2020年Hefei(中国)的MODIS数据和空气温度数据,从MODIS数据和空气温度数据中量化了大气衰减和每日温度变化因子的干扰。通过比较Hefei的不同土地利用强度下的TRD来评估TRD对SUHI强度定量的影响。结果表明:(1)白天和夜间方向性最高可达到4.7 K和2.6 K,并分别发生在最高和中等城市土地使用强度的区域。(2)对于白天的城市表面,有两个显着的TRD热点,其中传感器天顶角与原来的太阳能天顶角大致相同,而传感器Zenith角度在下午的Nadir附近。(3)TRD可以根据卫星数据评估SUHI强度的结果2.0 K,这约占Hefei总SUHI的31-44%。
如前所述,熵产生(表征热力学过程的不可逆性的关键数量)与系统自由度及其热环境之间的相关程度的产生有关。这就提出了一个问题,即这种相关性是否具有分类或量子性质,即,是否可以通过对相关自由度的局部测量来访问它们。我们通过考虑费米子和玻色症高斯系统来解决这个问题。我们表明,对于费米子,熵产生主要是量子的,这是由于均衡超选择规则限制了一组物理允许的测量值,从而显着限制了经典可访问的相关性的数量。相比之下,在骨髓系统中,可以通过高斯测量访问更多的相关性。特别是在低温下量子的贡献可能很重要,但在高温限制中,熵产生对应于纯粹的经典位置 - 摩托明相关性。我们的结果表明,在熵产生的显微镜公式中,费米子和骨系统之间存在着关于存在量子到古典跨性别的重要区别。他们还表明,即使在弱耦合极限中,熵产生也可能主要是由量子相关性引起的,该耦合极限在状态种群的经典速率方程方面以及在低粒子密度极限中的描述,其中玻色子的传输性能和费米子的运输特性将其转化为经典颗粒的粒子。
温室气体排放率的上升引起了全世界的关注 ( Chapman et al., 2022 ),碳中和的提出是为了指导节能环保的经济建设。目前,人们已经采取了各种努力来实现低碳经济,例如,基于液化气应用的冷链物流的发展 ( Dong et al., 2021 )、基于相变材料储能的建筑热环境控制 ( Wang et al., 2012 ; Zhang et al., 2020 ) ,以及基于氢燃料电池的汽车可再生能源供应 ( Tsuchiya, 2008 )。随着数据处理要求的爆炸式增长,数据中心的功率密度可高达 400 – 3,000 W/m 2,这带来了很高的散热需求 ( Zhang et al., 2011 ; Liu et al., 2013 )。因此,数据中心制冷的二氧化碳排放量正在迅速增加(Deymi-Dashtebayaz 和 Valipour-Namanlo,2019 年)。开发基于零碳能源的制冷和冷藏技术迫在眉睫。由于广泛存在的可再生能源(如太阳能和地热能)提供热量而不是电能,因此由热源驱动的制冷方法是最佳的。我们介绍了热驱动制冷方法和可以利用的可再生能源,为优化数据中心的低碳制冷提供见解。
客机客舱是一个狭窄而封闭的空间,通常人口密度很高。由于现在的长飞行时间,热舒适度成为设计阶段需要考虑的重要因素。波音、空客等飞机制造商为改善热舒适度付出了相当大的努力(Pang et al. 2014)。有几种方法可以用来研究这类区域的热舒适度。在一些研究中,使用了著名的预测平均投票 (PMV) 模型(Fanger 1970),但也有一些研究进行了现场热舒适度调查。也可以采用数值模拟和计算流体动力学 (CFD) 来预测局部皮肤温度并计算热舒适度。Cui et al.(2014)在飞机客舱内进行了现场测量,以绘制空气温度、相对湿度、黑球温度和空气速度等影响参数。还对乘客进行了问卷调查。他们得出的结论是,乘客对热环境并不满意,因为他们感觉很热。热舒适度图表现出不均匀性;中舱的温度始终较高。但是,据报道,垂直温度梯度以及空气速度都在舒适区内。在另一项研究中,调查了飞机客舱乘客的局部和整体热舒适度(Park 等人,2011 年)。得出的结论是,模拟舱内的整体热感觉
2.7.3. GTO 双机发射的发射窗口 2.7.4. GTO 单机发射的发射窗口 2.7.5. 非 GTO 发射的发射窗口 2.7.6. 发射推迟 2.7.7. 升空前关闭发动机 2.8. 上升阶段的航天器定位 2.9. 分离条件 2.9.1. 定位性能 2.9.2. 分离模式和指向精度 2.9.2.1. 三轴稳定模式 2.9.2.2. 自旋稳定模式 2.9.3. 分离线速度和碰撞风险规避 2.9.4. 多重分离能力 第 3 章 环境条件 3.1. 一般要求 3.2. 机械环境 3.2.1. 静态加速度 3.2.1.1. 地面 3.2.1.2. 飞行中 3.2.2.稳态角运动 3.2.3. 正弦等效动力学 3.2.4. 随机振动 3.2.5. 声振动 3.2.5.1. 地面 3.2.5.2. 飞行中 3.2.6. 冲击 3.2.7. 整流罩下的静压 3.2.7.1. 地面 3.2.7.2. 飞行中 3.3. 热环境 3.3.1. 简介 3.3.2. 地面操作 3.3.2.1. CSG 设施环境 3.3.2.2. 整流罩或 SYLDA 5 下的热条件 3.3.3. 飞行环境 3.3.3.1. 整流罩抛弃前的热条件 3.3.3.2. 气动热通量和整流罩抛弃后的热条件 3.3.3.3. 其他通量 3.4. 清洁度和污染 3.4.1.环境中的洁净度 3.4.2. 沉积污染 3.4.2.1. 颗粒污染 3.4.2.2. 有机污染 3.5. 电磁环境 3.5.1. L/V 和范围 RF 系统 3.5.2. 电磁场 3.6. 环境验证
航天任务中经常出现的极端温度或生理要求高的环境对飞行员和宇航员构成了很高的热应激风险,这可能导致中暑和人体性能下降。这在军用飞机中尤其普遍,因为军用飞机的许多飞行研究设施和机场都位于炎热干旱的沙漠或高湿度的热带气候中。这些环境中的高温会加剧飞行员因其他生理和环境压力而产生的热应激的严重程度。为了测量热应激水平的关键生物指标——核心体温,我们提出了一种非侵入性方法,用于在真实的开放世界环境中使用移动生物传感器测量心率和皮肤温度来测量极端高温应激下的受试者。作为在极端热环境中操作的飞行员的模拟,我们利用了对连续数小时暴露在汽车驾驶舱内高热应激下的专业赛车手的观察结果。驾驶员所经历的条件不仅包括分层防护设备产生的热应激,还包括来自操作环境和车辆的热应激。卡尔曼滤波器旨在利用车手心率和皮肤温度传感器生成的线性模型来预测核心体温。从 4 位不同车手的 15 场比赛中获得的数据用于训练线性模型和
2.7.3.GTO 双发发射窗口 2.7.4.GTO 单发发射窗口 2.7.5.非 GTO 发射窗口 2.7.6.发射推迟 2.7.7.升空前发动机关闭 2.8.上升阶段的航天器定位 2.9.分离条件 2.9.1.定位性能 2.9.2.分离模式和指向精度 2.9.2.1.三轴稳定模式 2.9.2.2.自旋稳定模式 2.9.3.分离线速度和碰撞风险规避 2.9.4。多分离能力 第 3 章。环境条件 3.1。一般 3.2。机械环境 3.2.1。静态加速度 3.2.1.1。地面 3.2.1.2。飞行中 3.2.2。稳态角运动 3.2.3。正弦等效动力学 3.2.4。随机振动 3.2.5。声振动 3.2.5.1。地面 3.2.5.2.飞行中 3.2.6.冲击 3.2.7.整流罩下的静压 3.2.7.1.地面 3.2.7.2.飞行中 3.3.热环境 3.3.1.简介 3.3.2.地面操作 3.3.2.1.CSG 设施环境 3.3.2.2.整流罩或 SYLDA 5 下的热条件 3.3.3.飞行环境 3.3.3.1.整流罩抛射前的热条件 3.3.3.2。整流罩抛射后的气动热通量和热条件 3.3.3.3。其他通量 3.4。清洁度和污染 3.4.1。环境中的清洁度水平 3.4.2。沉积污染 3.4.2.1。颗粒污染 3.4.2.2。有机污染 3.5。电磁环境 3.5.1。L/V 和范围 RF 系统 3.5.2。电磁场 3.6。环境验证