功率为 2.64 nW/Hz 1/2,在 0.3 THz 时超快响应时间为 2.5 μs。热介导的 CDW 跃迁允许对设备功能进行微调,在单一架构中集成传感、逻辑和内存。这种方法摆脱了传统的冯·诺依曼架构,通过局部的传感器内计算解决了能源效率和延迟瓶颈,从而实现了范式转变。此外,我们的研究结果深入了解了 CDW 系统中对称性破坏机制、量子相干性和非平衡动力学的相互作用,阐明了驱动设备性能的潜在物理原理。多场控制下电阻状态的长期保持和强大的相位稳定性证明了基于 CDW 的设备用于安全通信、加密处理和可编程光电逻辑的可行性。这些结果强调了 CDW 驱动的热电逻辑系统在推进太赫兹光电网络方面的变革潜力,同时拓宽了对凝聚态物理学中相关量子现象的理解。
S。Maqsood A,B,*,S。Mumtaz C,M。A. Javed D,M。Attiqus Salam A,E,E,Khalid M. Elhindi F A Lahore -54000 B物理学的Wahdat Road wahdat Road Govt的物理学系,GC Polysics(CASP),GC University,lahore colication and libiolicy kc and libioloy -54000 colohory -00000 co。大学,首尔01897,韩国d数学系,加利福尼亚大学,拉合尔-54000,巴基斯坦e物理系,GC大学,拉合尔-54000,巴基斯坦F植物生产系,食品与农业科学学院,国王Saud University,Saud University,P.O.Box 2460,Riyadh 11451,沙特阿拉伯在这项研究中,我们介绍了对卤化物双重perovskites CS 2 AUSBX 6(X = CL,BR,I)的特征的经验研究,并强调结构,机械,机械和光电元素,以及热电学能力。对热和结构耐用性的评估涉及测量制造和公差比的焓。在结构中相同位置用溴(BR)和碘(I)代替氯(CL)导致晶格特性的激增,并且大量弹性减少。使用弹性系数的模量计算弹性表明其柔性特征。对电带结构的检查表明,它具有间接的带隙特征。强调了许多特征的适用性,例如介电系数,灭绝系数,反射率,电子电导率,热电导率以及Seebeck系数,并强调用于光伏和热小工具。(2024年9月29日收到; 2024年12月5日接受)关键词:热性能,光学特征,双钙钛矿卤化物,间接类型的带隙半导体材料材料1。引入全球人口的指数增长以及各种高级电子设备的广泛利用导致能源需求的持续增长,而当前的化石燃料无法满足[1,2]。为了解决日益增长的全球能源消耗,获得可再生和环保能源至关重要[3]。专家正在积极寻求具有成本效益,环保且非常有效的能源替代方案来满足需求[4]。太阳能由于其可及性和生态友好而是所有形式的可持续能源之间的最佳选择[5]。根据研究结果,利用来自太阳的一个小时的光线可以产生足够的电能,以满足全年的全球电力需求。太阳能是丰富而强大的电力来源。如果我们利用并将其转变为电力,它有可能以当前形式维持全球人口二十七年的时间[6,7]。石油和煤中的所有能量与地球连续三天内接收的太阳辐射量相同[8,9]。太阳能是指太阳发出的电磁辐射,可以利用通过使用太阳能电池来产生温暖或电力[10]。太阳能电池可分为三代。最初的太阳能电池耐用且可靠,利用硅
• 开发了 AM 翼型冷却设计和校正系数,使燃气轮机入口温度相对于最先进的涡轮机提高 100°C,而无需增加冷却剂质量流量。
作为利用基本专利注册来推进与热电发电相关的新业务的合资企业而成立。 ・2013年在大阪大学设立开发基地。 ・2016年被认定为NEDO STS项目后,进行了第三方新股配售。 ・2018年获得京都市创业企业评估委员会的A级认证。 ・2020年在京都大学桂创业广场设立开发基地。 ・2022年被近畿经济产业局评选为“J-Startup KANSAI”。 ・2023年10月被选为G7广岛峰会的G7大阪堺部长会议参展。 ・11月,从全球200家公司中被选为奥地利政府“GO AUSTRIA Fall 2023”的受邀公司(2家)。 ・12月参加“TechBIZKON VII 数字化——DX微电子”。
工业部门约占全球二氧化碳排放量的四分之一,其中中国占近一半,印度、欧盟 28 国和美国占另外四分之一。大幅削减工业二氧化碳排放量是到本世纪中叶实现全球净零排放的必要条件。国际能源署此前在工业脱碳方面的工作主要集中在钢铁和水泥行业,这两个行业需要取得重大技术突破和持续的政策支持才能实现大幅减排。与此同时,其他工业部门(如纺织、造纸、食品和饮料)也使用大量化石燃料来提供低温热能和蒸汽。这些能源需求可以通过使用热电化技术(如热泵和电锅炉)从可再生电力中满足,这些技术在很大程度上是商业上可用且成熟的。
材料必须在表现出低的导热率的同时结合高塞贝克系和电导率。3广泛认可了常规无机半导体材料(例如BI 2 SB 3,BI 2 TE 3和PBTE)的进步。2,3与它们的无机柜台相比,进行聚合物有望在废热收集中使用时出色的优势,可享有丰富的可及性,丰富的可用性,成本效益,轻度和固有的低导热率。4 - 6聚(3,4-乙二醇乙烯噻吩):聚(苯甲酸苯甲酸酯)(PEDOT:PSS)是一种导电聚合物,在TE应用中具有有希望的利用特征。这种可商购的聚合物表现出显着的优势,例如水的差异性,良好性,高透明度和易于加工性。7 - 9这些特征有助于其在热电学中的可行材料。但是,应注意,与以前的研究相比,该特定聚合物表现出的TE性能显着降低。10,11
随着聚光太阳能发电 (CSP) 技术的进步,选择有效的传热流体 (HTF) 对于优化热效率和储能容量仍然至关重要。本综述简要概述了 CSP 应用中最常用的 HTF——熔盐、合成油、纳米流体和气态流体,重点介绍了它们独特的热物理性质、应用和性能特征。虽然熔盐和纳米流体在高温存储方面前景光明,但高熔点、腐蚀和成本限制等挑战仍然存在。通过创新的 HTF 配方和增强的材料兼容性来解决这些限制对于最大限度地提高 CSP 效率和可持续性至关重要。未来对先进 HTF 的研究可能会显著提高 CSP 性能,支持向可靠的可再生能源解决方案转变。
热电材料能够实现热和电的直接转换,在制冷和发电方面有着良好的应用前景,引起了人们的广泛关注。考虑到更广泛的应用场景和在室温(RT)附近更大的需求,在过去的几十年里,在室温附近具有高性能的 TE 材料引起了广泛的研究关注。材料的 TE 性能通过其无量纲性能系数 zT = S 2 σT/(κ e +κ L ) 来判断,其中 S、σ、T、κ e 和 κ L 分别为塞贝克系数、电导率、绝对温度、热导率 κ 的电子和晶格分量。到目前为止,Bi 2 Te 3 基合金是唯一在 RT 附近具有理想 zT 值的商业化材料,而 n 型 Mg 3 Sb 2 最近被认为是另一种有前途的 TE 材料,其 zT 在 RT 附近约为 0.8。 Bi 2 Te 3 和 Mg 3 Sb 2 均具有本征的低晶格热导率κL,这是其高TE性能的基础之一。1-4
免责声明这一信息是作为由美国政府机构赞助的工作的帐户准备的。美国政府或其任何机构,或其任何雇员均未对任何信息,设备,产品或过程披露或代表其使用将不会侵犯私人拥有的私有权利。参考文献以商品名称,商标,制造商或其他方式指向任何特定的商业产品,流程或服务,并不一定构成或暗示其认可,建议或受到美国政府或其任何机构的支持。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。
