可再生能源(RES)主要由太阳能,风,生物量,水力发电,地热和潮汐能组成。这些能量被称为可再生,因为它们是自然,清洁且取之不尽的[1]。在过去的几十年中,由于化石燃料储量迅速和气候变化的关注,全球范围内的重点一直转移到RES作为能源发电的手段[2]。但是,由于自然资源的间歇性质(例如,太阳和风),低效率(相对于化石燃料)以及可再生能源技术(RET)的昂贵部署成本,因此向可再生能源的过渡并不像它所需的那样无缝[3]。生物量目前是为了克服这些修复的尝试,因为它比常规RET较低,效率更低,并且独立于自然资源[4]。有两种主要方法可以利用这种可再生能源,即燃烧和厌氧消化(AD)。燃烧是通过燃烧生物块(有机废物)和热量形式恢复能量的,可直接用于加热或进一步转化为电力。至于AD,它涉及有机物的生物降解(农产品,纸废物等)在没有氧气的情况下,细菌(可通过添加动物粪便或市政废水提供)。 这种生物学过程允许以沼气(甲烷和二氧化碳的混合物)的形式恢复能量。 与燃烧相比,AD为草本生物量提供了出色的势能,如[5]中报道。。这种生物学过程允许以沼气(甲烷和二氧化碳的混合物)的形式恢复能量。与燃烧相比,AD为草本生物量提供了出色的势能,如[5]中报道。广告过程已被证明是生产能量的一种可靠且可持续的方法,
GEA咨询号。 03 TO : ALL QUALIFIED SUPPLIERS OF THE GREEN ENERGY AUCTION PROGRAM DATE : 28 JANUARY 2025 SUBJECT : LIST OF QUALIFIED BIDDERS FOR THE THIRD GREEN ENERGY AUCTION ROUND (GEA-3) Pursuant to the Terms of Reference (TOR) for the third Green Energy Auction Round (GEA-3), the Green Energy Auction – Bids Evaluation and Awards Committee (GEA-BEAC), with the assistance of the Green Energy Auction Committee – Technical Working Group (GEAC-TWG),对合格供应商在2025年1月9日至10日的注册期间提交的注册文件进行了审查。 符合条件的竞标者列表随附以供参考。 根据GEA-3 TOR的第5.1.1条,所有合格的投标人都必须通过电子邮件提交BID保证金的证明,在PDF文件中,通过电子邮件gea.3@doe.gov.ph.ph.ph,直到2025年2月5日下午12:00 pm。 此外,合格的投标人必须在2月8日,直到12nn,每个项目(或每个阶段)提交一(1)个唯一的电子邮件地址(或每个阶段)。 电子招标平台中合格的竞标者要使用的默认密码应发送到提供的唯一电子邮件地址。 为了确保其各自的帐户,所有合格的竞标者都被命令确认包含默认密码的电子邮件,并在登录时更改上述密码。 有关信息和指导Felix William B. Fuentebella副主席,GEA-BEACGEA咨询号。03 TO : ALL QUALIFIED SUPPLIERS OF THE GREEN ENERGY AUCTION PROGRAM DATE : 28 JANUARY 2025 SUBJECT : LIST OF QUALIFIED BIDDERS FOR THE THIRD GREEN ENERGY AUCTION ROUND (GEA-3) Pursuant to the Terms of Reference (TOR) for the third Green Energy Auction Round (GEA-3), the Green Energy Auction – Bids Evaluation and Awards Committee (GEA-BEAC), with the assistance of the Green Energy Auction Committee – Technical Working Group (GEAC-TWG),对合格供应商在2025年1月9日至10日的注册期间提交的注册文件进行了审查。符合条件的竞标者列表随附以供参考。根据GEA-3 TOR的第5.1.1条,所有合格的投标人都必须通过电子邮件提交BID保证金的证明,在PDF文件中,通过电子邮件gea.3@doe.gov.ph.ph.ph,直到2025年2月5日下午12:00 pm。此外,合格的投标人必须在2月8日,直到12nn,每个项目(或每个阶段)提交一(1)个唯一的电子邮件地址(或每个阶段)。电子招标平台中合格的竞标者要使用的默认密码应发送到提供的唯一电子邮件地址。为了确保其各自的帐户,所有合格的竞标者都被命令确认包含默认密码的电子邮件,并在登录时更改上述密码。有关信息和指导Felix William B. Fuentebella副主席,GEA-BEAC
Element 16 Technologies, Inc.(Element 16)成功开发并展示了一种新型长时储能技术,该技术使用单罐配置的硫磺来经济高效地储存和调度可再生能源电力。核心创新是利用石油和天然气工业中丰富的废副产品硫磺,大幅降低 Element 16 热能储存的成本。该团队建造并测试了一个中试规模的 1.5 兆瓦时硫磺热电池装置,该装置集成了一个电加热器,旨在利用可再生能源发电产生的可变多余电力进行充电。储存的热量通过小型低温发电装置转化为电能,该装置也可直接用于工业过程热脱碳。
图 5:(a) n 型聚合物(区域随机 x+y,其中 x:R 1 =C 12 H 25 ,R 2 =H;y:R 1 =H,R 2 = C 12 H 25 )和 N-DMBI 的化学结构,用于证明 O 2 消耗。 (b) 掺杂 P(FBDOPV-2T-C 12 )的 ESR 光谱,在室温下于 t0 搅拌(黑线),在 100°C 下搅拌 5 至 90 分钟,在室温下之后(红线),溶于无水氯苯(ESR 管在充满氩气的手套箱中制备,O 2 < 10 ppm,黑暗条件)。信号(c)线宽和(d)强度(双重积分)随室温下于 t0 搅拌时间的变化
掺杂是提升各种有机电子器件性能的重要策略。然而,在许多情况下,共轭聚合物中掺杂剂的随机分布会导致聚合物微结构的破坏,严重限制了电子器件的可实现性能。本文表明,通过离子交换掺杂聚噻吩基 P[(3HT) 1-x -stat-(T) x ](x = 0(P1)、0.12(P2)、0.24(P3)和 0.36(P4)),无规共聚物 P3 实现了 > 400 S cm − 1 的极高电导率和 > 16 μ W m − 1 K − 2 的功率因数,使其成为有史以来报道的基于未排列的 P3HT 薄膜中最高的电导率之一,明显高于 P1(< 40 S cm − 1 、< 4 μ W m − 1 K − 2)。尽管两种聚合物在原始状态下都表现出相当的场效应晶体管空穴迁移率≈0.1 cm 2 V − 1 s − 1,但掺杂后,霍尔效应测量表明 P3 表现出高达 1.2 cm 2 V − 1 s − 1 的霍尔迁移率,明显优于 P1(0.06 cm 2 V − 1 s − 1)。GIWAXS 测量确定掺杂 P3 的平面内𝝅 – 𝝅堆叠距离为 3.44 Å,明显短于掺杂 P1(3.68 Å)。这些发现有助于解决 P3HT 中长期存在的掺杂剂诱导无序问题,并作为在高掺杂聚合物中实现快速电荷传输以实现高效电子器件的典范。
免责声明 本信息是根据美国政府机构资助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
标题:使用原子探针断层扫描摘要在材料中看到氢:金属材料中的氢存在可能导致灾难性的早期裂缝,称为氢含糖。观察氢及其在微观结构中相关的影响一直是一个巨大的挑战,它限制了解决该问题的解决方案。为此,我们的研究小组开发了一种特殊的工具,即低温原子探针断层扫描(Cryo-Apt),用于氢图,并将其与微力方法结合使用,以研究钢中的氢化含量。我们的努力为破译钢中的氢气诱捕和拥抱机制提供了新的见解,从而促进了钢微结构的发展,钢微结构具有良好的抵抗力。bio:Yi-Sheng(Eason)Chen博士是Nanyang助理教授(NAP)和新加坡国家研究基金会(NRF)材料科学与工程学院,Nanyang Technological University,新加坡(NTU)。他的研究重点是材料表征,冶金和氢技术。专门使用高级显微镜技术,例如原子探针断层扫描(APT)和电子显微镜来开发高级金属材料的结构属性处理关系。从这些努力中获得的见解将有助于更深入地了解材料行为,为发展下一代高性能材料的发展铺平道路。他是Sinica学术界物理研究所的前研究助理。 参考:[1] Y.-S. Chen等。他是Sinica学术界物理研究所的前研究助理。参考:[1] Y.-S. Chen等。“金属中的氢诱捕和覆盖 - 综述。”国际氢能杂志(印刷中)(2024年)。https://www.sciendirect.com/science/article/pii/s036031992401332 6
摘要:有机材料对热电应用,尤其是在柔性设备中具有巨大的预测,因为它们具有柔软和轻巧的性质。该领域的最新进展是通过有机热电材料和更有效的设备设计的增强来推动的。本评论提供了这些进步的全面概述。首先详细介绍了高效有机热电材料的演化和性能优化,并强调化学和物理修饰。该评论还深入研究了灵活设备的创新设计策略,涵盖了新的结构方法,性能建模和热管理技术。此外,它检查了3D打印和薄膜沉积等先进的制造过程。为了强调全球趋势和挑战,该评论整合了顶级研究机构的发现。评论项目在材料开发,表征技术和设备优化方面的未来突破,尤其是专注于PEDOT:PSS和PANI等材料的进步。它强调了提高电导率和Seebeck系数的策略。值得注意的是,创新的设备设计具有显着提高的能量转换效率,而数值模拟提高了输出电压和功率密度。此外,诸如3D打印和解决方案处理之类的尖端制造技术还促进了复杂结构的可扩展生产。总而言之,这些集体进步推动了用于多种应用的高性能,具有成本效益和可持续的热电技术,包括可穿戴电子产品,能源收集和热管理。
4DH 第四代区域能源 Ca。大约资本支出 资本支出 CHP 热电联产 CO 2 二氧化碳 DH 区域供热 DHC 区域供热公司 DHW 生活热水 EBITDA 息税折旧摊销前利润 EIRR 经济内部收益率 ESAP 环境与社会行动计划 ESDD 环境与社会尽职调查 ESIA 环境与社会影响评估 EU 欧盟 EUR 欧元 EURIBOR 欧洲银行间同业拆借利率 ETI 预期转型影响 FDI 外国直接投资 GCAP 绿色城市行动计划 GDP 国内生产总值 GET 绿色经济转型 GHG 温室气体 GrCF3 W2 绿色城市框架 3 – 窗口 II IMF 国际货币基金组织 Km 公里 LGD 违约损失率 MEI 市政和环境基础设施 MoF 财政部 MoME 矿业和能源部 MW 兆瓦 MWh / GWh 兆瓦时 / 千兆瓦时 NDC 国家自主贡献 NECP 国家能源与气候计划 PD 违约概率 PSD公开摘要披露 PIU 项目实施单位 PP&R 银行采购政策与规则 PV 光伏 RAROC 风险调整资本回报率 ReDEWeB 西巴尔干地区可再生区域能源计划 RES 可再生能源 RoS 塞尔维亚共和国 RSD 塞尔维亚第纳尔 SBA 备用安排 TC 技术合作 WBIF 西巴尔干投资框架 YE 年末