D.,Belmont Scientific 10:00休息10:15 Ram-Dent Trigger方法开发Vincent Glover,NASA,Johnson Space Center 10:45被动预防锂离子电池中的热失控和火灾繁殖Vijay V. Vijay V. V. V. Devarakonda,Devarakonda,Ph.D.,Ph.D. Energy Cells Eric Darcy, NASA, Johnson Space Center 11:45 Lunch 1:30 Investigation of Electrically Conductive Aqueous Solutions for De-Energizing Lithium-Ion Batteries Alex Di Sciullo Jones, R&D Engineer, UL Solutions 2:00 GS Yuasa Generation 4 Li-Ion Cell and Battery Performance Update Tom Pusateri, GS Yuasa Lithium Power 2:30 Nanostructured Germanium thin fills as航空航天应用锂离子电池的阳极材料Valentina Diolaiti,A。Andreoli,G。Mangherini,D。Vincenzi,Ferrara大学物理与地球科学系; S. Chauque,M。Ricci,R.Z。Proietti,意大利技术研究所3:00休息3:15关于NASA应用的AL 4 AH零电压稳定性的研究Linhua(Steven)Hu,Ph.D。,Jiang Fan,Jiang Fan,Ph.D。 4:15使用热量表Surendra K. Singh博士,Belmont Scientific 4:45灵活需求太空站功能系统功能和特征Mark Miner,P.E.,P.E。,P.E.
- 应用热量表的有效标准:EN 1434,第1-6部分;测量工具指令2014/32/eu,附件I和MI-004;以及相关的国家验证法规。- 用于选择,安装,调试,监视和维护仪器的遵守标准EN 1434第6部分,以及验证法规PTB TR K8 + K9(以及其他国家 /其他国家 /地区的任何相关国家验证法规)。- 对于组合热/冷却计,冷却寄存器没有验证。国家法规,以进行冷却测量。- 必须观察到电气安装的技术法规。- 该产品符合欧洲理事会电磁兼容性指令(EMC指令)2014/30/EU的要求。- 仪器和密封件的识别板不得删除或损坏 - 否则,该仪器的保证和批准的应用不再有效!- 为了实现仪表的测量稳定性,水质量必须满足AGFW反应FW-510的要求和文档VDI(德国工程师协会)VDI 2035。- 热量计符合所有适用的安全法规,使工厂离开了工厂。所有维护和维修工作只能由合格和授权的技术人员进行。- 带有激活无线电功能的仪器在空运上不允许使用。- 必须选择系统中的正确安装点:入口或出口流(请参阅项目3.1“象形图安装点”)。- 温度传感器电缆以及计算器和流动传感器之间的电缆不得扭结,卷起,延长或缩短。- 清洁热量计(仅在必要时)使用略微湿的布。- 为了防止损坏和污垢,在安装之前,只能直接从包装中除去热量计。- 如果在一个单元中安装了一个以上的热量计,则必须注意确保所有仪表的安装条件相同。- 数据表和应用说明中列出的所有规格和说明都必须遵守。可以在www.engelmann.de上获得更多信息。- 热量计具有锂金属仪。不要打开电池,不要将电池与水接触或暴露于80°C以上的温度。不要向他们收取或缩短它们。
摘要在这项研究中,通过用苯胺盐氧化聚合方法制备了聚苯胺(PANI)。p-硫烯磺酸(P TSA)充当赋予导电性能的掺杂剂。掺杂过程将PANI的颜色从蓝色Pani Emeraldine碱(EB)转变为绿色Pani Emeraldine Salt(ES)。通过热重分析(TGA)和差异扫描量热法(DSC)分析了掺杂的PANI的热特性。TGA结果说明了PANI-EB体重减轻的两个主要阶段,这是水分含量和聚合物降解的损失。pani-es显示了三个降解阶段,这些阶段是去除掺杂剂,水分含量和聚合物主链的分解。Pani-es开始在170至173°C的较高温度下降解。这个结果表明,与PANI-EB相比,Pani ES具有更高的热稳定性,而PANI-EB的温度范围为160至163°C的较低温度开始恶化。dsc分析表明,pani的PTSA中有0.9 wt。PTSA的热量表中描绘了一系列宽峰,这表明与PANI相比,与PANI相比,pani的峰值较高,而PANI则具有不同浓度的PTSA。此外,pani为0.9 wt。%的P TSA在125°C时表现出最高的热稳定性。准备好的PANI通过应用易于浸入技术来制造导电织物。将棉布浸入三种不同浓度(0.3、0.6和0.9 wt。%)的Pani-PSA溶液中。基于电阻抗光谱(EIS)分析的发现,可以得出结论,与PANI相比,PANI的PANI为0.9 wt。PTSA的PANI表现出更好的电导率(3.30 x 10 -3 s/m),而PANI的电导率(1.06 x 10 -7 s/m)。关键词:聚苯胺,导电聚合物,热重分析,差扫描量热法,电阻抗光谱
上个世纪的快速技术进步导致温度传感领域中带来了新的Challenges。准确,遥远,无接触式和实时微观和纳米级的温度映射在细胞成像,微流体和纳米流体以及集成电路设计中的需求巨大,[1-11]中,这些严格的要求需要使用光学方法。这些通常分为三个主要的猫:红外(IR)隆期,IR直接检测和远程光学/荧光热量表。,由于其出色的热分辨率(10-1 K),其中最常见的是IR射量方法,例如在商业设备中发现的方法。然而,要检测到的黑体辐射的长红外波长导致室内温度(RT)对象的固有低空间分辨率为≈10µm,这是由于abbe差异的限制所期望的。对IR光的检测也遭受了由于吸收而缺乏与广泛的光学成分相兼容。[12,13]或者,在可见区域中运行的远程光学方法,例如,通过测量荧光强度或衰减时间,[14]达到了很高的热分辨率,并且可能由于较低的衍射极限而有可能提供较高的空间分辨率,并且在常见媒体(例如水和玻璃)中透明度。[13,15,16]基于强度的量化,由于光散射(样品拓扑,磷光粒子形态等)而容易出现错误。),不均匀的磷光器分布,非态磷光物种形成或批处理变异性等。虽然基于荧光时代的热量成像是继承了许多此类局限性,但其部署通常会因适合特定应用的特定要求的磷剂的可用性而受到阻碍。我们的本文提出的研究涉及在RT周围温度下在温度下进行高空间和热分辨率热图形的新型热液少量探索。在这种情况下,我们发现已知的热燃料载体,即有机染料,聚合物,量子点,稀有掺杂的金属氧化物,[17-25]面临限制,例如材料制造或薄膜沉积,耐用性和健壮性的耐用性和稳健性的耐磨性,或者不适合特定范围的特定方法或常见的特定方法。
在凯文后的重新定义时代,温度可追溯性受到开尔文(MEP-K-19)定义的CCT批准的机制。开发新一代的基于光学的主要温度测量方法可以直接在原位中直接使用,这将满足当前需要重新校准传感器的需求。同时,量子技术的最新发展需要非常控制的原位温度计(直接集成到量子芯片集中),以直接在发生量子测量的地方进行测量。在Empir JRP 17FUN05摄影项目中,已经制造了最新的光学机械和光子谐振器,并且已经实施了可追溯的温度测量值,以准确对这些新温度传感器的计量验证。在较大的温度范围内证明了使用光学传感器的实用相噪声温度计:从4 K到300K。但是,在大于(高于300 K)温度范围内测量的测量时,需要一系列光学机械传感器来减少相应的不确定性。在低温温度(低于10 K)下,量子光学技术可以实现准确的初级温度计(不确定性<0.2 K)。量子相关温度法作为替代初级温度计技术集成在纳米级,并且对磁场不敏感。除了初级温度测定法外,高精度和分辨率还需要光子温度计。对于实际应用(低温温度),芯片通过光纤需要进行光学耦合。光子温度计是一种基于热光效应的芯片量表技术,即光波导的折射率的温度依赖性,它决定了光学谐振器的谐振频率的温度,从而导致非常高的温度分辨率(SUBMK)。最低工作温度是通过光学波导的热效应施加的,光学波导对于低于80 k的硅变得很小。光子温度计具有很高的灵敏度(硅硅的70 pm/k),但是它需要在此处开发的其他类型的温度计,因为它是一种非优质的热量计质,因为它是其他类型的热量表。可以通过将芯片固定在纤维本身上来实现,但是为了确保连接技术的可重复性和所使用材料的兼容性的可重复性,需要在较大的温度范围内测试该方法。为此,可以考虑基于胶水连接的标准耦合方法。但是,由于低温温度下胶的热应力,它们的使用受到限制。作为一种替代方案,已经提出了激光焊接方法将融合的二氧化硅纤维与集成微晶状体的硼硅酸盐纤维底物进行硼硅酸盐玻璃底物。需要开发应力补偿技术和新颖的光学设计,以促进广泛的温度范围光学平台。最后,光子
得克萨斯理工大学物理与天文学系(TTU)邀请J. Fred Bucy和Odetta Greer Bucy Bucy Bucy endowed授予实验性粒子物理学主席的提名或申请,并在2024年9月1日的拟议开始日期。我们希望成功的候选人能够在非责任实验粒子物理学中建立,开发和领导一项国际认可和有远见的研究计划,该计划解决了中微子物理学,暗物质,暗能量或类似定义的领域中最紧迫的问题。TTU可获得大量资源,以加强和支持研究工作。这些包括慷慨的启动资金和与现有的高能物理小组的合作,该小组在强子撞机物理学(CMS)和检测器R&D中具有悠久的历史。高级粒子探测器实验室为未来的几种应用开发了创新的探测器技术,并通过为高颗粒性终端cap热量表构建大量硅传感器模块来为HL-LHC CMS II阶段II升级做出贡献。高性能计算中心提供了可用的大量资源和专业知识来支持粒子物理学的数据分析。候选人必须获得博士学位。在物理学或密切相关的领域,建立了重要的外部资金来支持其研究的出色记录,并在本科和研究生水平上都表现出了出色的教学。候选人有望继续获得壁外资金,以支持其研究,而检测器研发是重要的组成部分。也期望为系,学院和大学提供服务。ttu被指定为卡内基研究1机构,也被公认为是西班牙裔服务机构(HSI)。ttu位于西德克萨斯州高平原城市拉伯克(人口超过250,000),拥有出色的医疗设施,低生活成本以及半干旱,阳光明媚和温和的气候。Lubbock在达拉斯,奥斯丁,圣达菲和其他主要大都市的行驶范围内。每个申请人应提交至少三个参考文献的VITA,出版物清单,研究兴趣和计划表,教学理念和联系信息。应用程序应在线提交,请在http://jobs.texastech.edu上使用申请ID 34577BR在线提交。询问应针对搜索委员会主席Nural Akchurin(nural.akchurin@ttu.edu)。申请的审查将从2023年11月1日开始,并将继续直至填补该职位。所有合格的申请人都将在不考虑种族,颜色,宗教,性别,性取向,性别认同,性别表达,国籍,年龄,残疾,残疾,遗传信息或身份作为受保护的老兵的情况下都会考虑就业。