Liu 等 [36] 在 1950 ℃ 和 50 MPa 压力的 SPS 过 程中,发现随着 TiB 2 的添加量由 5 mol% 增至 30 mol% ,复合陶瓷的硬度降低,断裂韧性增加。 除裂纹偏转和 TiB 2 的钉扎效应使 B 4 C 晶粒细化 ( 从 1.91 μm 减至 1.67 μm) 外,两相间位错的产生, 是 B 4 C 陶瓷增强、增韧的次要原因,其在陶瓷断 裂前吸收能量,造成局部强化 [37–38] 。研究发现, 添加 20 mol% TiB 2 时,复合陶瓷的相对密度为 97.91% ,维氏硬度为 (29.82±0.14) GPa ,断裂韧性 为 (3.70±0.08) MPa·m 1/2 。 3.1.2 Ti 单质引入 与直接添加 TiB 2 相比,在烧结过程中原位反 应生成 TiB 2 可以在较低的烧结温度下获得更高 的密度和更好的机械性能。 Gorle 等 [39] 将 Ti-B( 原 子比 1:2) 混合粉体以 5 wt.% 、 10 wt.% 和 20 wt.% 的比例加入到 B 4 C 粉末中,研磨 4 h 后通过 SPS 在 1400 ℃ 下获得致密的 B 4 C 复合陶瓷。由于 WC 污染,获得了由被 (Ti 0.9 W 0.1 )B 2 和 W 2 B 5 的细颗粒 包裹的 B 4 C 颗粒组成的无孔微结构。当 Ti-B 混合 物的量从 5 wt.% 增至 20 wt.% 时,烧结活化能从 234 kJ·mol −1 降至 155 kJ·mol −1 。含 5 wt.% Ti-B 混 合物的 B 4 C 复合材料的最大硬度为 (3225±218) HV 。由于 TiB 2 的原位形成反应是高 度放热并释放大量能量的自蔓延反应,因此,原 料颗粒界面间的实际温度预计高于 SPS 烧结温 度,同时,液相 W 2 B 5 的形成润湿了 B 4 C 表面, 有助于降低 B 4 C 晶粒的界面能,并加速了沿晶界
摘要 - 由于技术的快速发展和开发,电子系统设计中的微型化已变得不可避免。由于较小的传热表面,热通量密度大大增加了热通量密度,因此对热管理能力提出了挑战。电子冷却中采用纳米流体似乎是实现更好的热量耗散的另一种方法。这项研究探讨了三元杂化纳米流体的可行性:Al 2 O 3:Sio 2在水中浓度不同的水中和混合物比例的水中,在蛇形冷却板中。在这项研究中,研究了0.01%的GO + Al 2 O 3:SIO 2,0.006%GO + Al 2 O 3:SiO 2和0.008%GO + Al 2 O 3:SIO 2的混合比为10:90和20:80(Al 2 O 3:Sio 2)。结果表明,与基础流体相比,纳米流体的0.01%GO + Al 2 O 3:SIO 2(10:90)纳米流体显示出最高增强的传热系数,高1.1倍。随后是0.008%GO + Al 2 O 3:SIO 2(10:90)和0.006%GO + Al 2 O 3:SIO 2(10:90),与基础流体相比,连续增强了1.03次和0.87倍的热传递系数增强。在混合比率的期限内,以10:90(Al 2 O 3:Sio 2)的表现高于20:80。为了评估采用的可行性,进行了优势比(AR)来测量热传递增强和压降效应。AR分析表明,在较低的雷诺,RE数字区域,0.01%GO + Al 2 O 3:SIO 2(10:90)三元杂交纳米流体被证明是最可行的,这是最可行的,这是由于热传递增强的压力较高。
群集也可能遭受束缚和烧结,最终导致其停用。适当的支持可以通过提供增强clusters稳定性的吸附位点[14,15]在这方面,基于碳基材料(G)(G)具有附加性的特性,例如机械强度,电导率,功能和化学屈服于其他支持,[16]均具有其他支持。[17,18]然而,在此类支持上稳定金属簇会带来相似的稳定挑战,需要解决。此外,应该注意的是,簇的结构和性能会根据其原子成分的性质而有很大变化:例如,它们的大小在很大程度上取决于构成金属的凝聚力,因为在一般情况下,粒度较低,粒度越大。[19]此外,支持不仅可以充当簇的稳定剂,而且还可能影响其催化活性。稳定小簇的最常见方法是在低温下种植它们,[20]通常利用Moiré调制的支撑的模板效应,因为G和基础基础之间的晶格不匹配引起的效果。[19,21]但是,这种方法不能用于在升高温度下发生的许多猫反应,因此不适合工业应用。已经提出了固定小簇并保持其结构的替代方法。[19]但是,这些方法在制造过程中需要其他步骤,此外,它们可能是例如,已经证明,在高粘性能金属播种时,自由基的吸附在播种时,可以为低粘性能金属提供成核位点。
1 IOPFE Institute,St.26,圣彼得堡194021,俄罗斯; cabri@mail.ru(V.S.G. ); zumisi@gmail.com(D.A.K. ); Sviatoslab。 ); ); pkervycova@mail.offe(P.D.C. ); (S.I.P. ); milk@mail.io.ru(S.A.R. ); ); (N.D.P. ); 2物理系。 vsysoev@stu。 ); solatinin1994@gmail.com(M.A.S. ); 柏林,柏林和能源,柏林,柏林,德国; 4 NRC“学院研究所”,学院学院。 1,莫斯科123182,俄罗斯;1 IOPFE Institute,St.26,圣彼得堡194021,俄罗斯; cabri@mail.ru(V.S.G.); zumisi@gmail.com(D.A.K.); Sviatoslab。);); pkervycova@mail.offe(P.D.C.); (S.I.P.); milk@mail.io.ru(S.A.R.);); (N.D.P.);2物理系。 vsysoev@stu。); solatinin1994@gmail.com(M.A.S.);柏林,柏林和能源,柏林,柏林,德国; 4 NRC“学院研究所”,学院学院。1,莫斯科123182,俄罗斯;
设计,优化和制造。数值技术,例如有限元分析,验收动力学,第一原理计算和多尺度建模,可以有效地预测机构属性并优化设计。与此同时,人工智能和大数据分析可以通过机器学习发现新材料和反向设计。智能手段与自适应控制系统相结合,实现了生产过程的自动化和实时优化,从而提高了制造效率和精度。尽管数据和计算成本不足,但随着技术的进步,材料科学却朝着更高的精度和自动化方向发展。
Dr. L. Muzi、C. Seifert、R. Soltani、Dr. C Ménard-Moyon、Dr. H. Dumortier、Dr. A Bianco CNRS、免疫学、免疫病理学和治疗化学、UPR3572、斯特拉斯堡大学、ISIS、67000 斯特拉斯堡、法国 电子邮件:a.bianco@ibmc-cnrs.unistra.fr 关键词:碳材料、超分子复合物、溶菌酶、B 细胞、癌症
企划管理部 IoT应用推进部 社会基础设施解决方案本部 金融及企业解决方案本部 网络系统本部 防卫系统本部 IoT平台本部 系统中心 基础技术中心 信息通信本庄工厂 信息通信沼津工厂