在这项工作中,合成了氧化石墨烯(GO)纳米颗粒并随后使用3-氨基丙基三甲氧基硅烷(APTMS)进行了修饰。Anderson型多氧碱[(C 4 H 9)4 N] 2 [CRMO 6 O 18(OH)6],然后将其固定在改良的石墨烯氧化石墨烯纳米颗粒的表面上。The obtained catalyst was characterized using Fourier-transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDS), inductively coupled plasma (ICP), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Raman spectroscopy, and X-ray diffraction (XRD).在基于溶剂的条件下,评估了该可回收混合催化剂的催化性能在75°C下合成了苯咪唑衍生物。混合催化剂表现出易于分离,并且可以成功重复使用至少六次,而所需产品的产量仅略有降低。浸出和恢复测试以及FT-IR分析证实了催化活性物种的高稳定性和催化剂的异质性。
揭示了G和C-S-H之间仅有范德华力,界面键合强度很弱,并且脱键性能很低。石墨烯的脱根能量随着界面水含量的增加而降低,表明水侵入会削弱G和C-S-H的结合效应,并减少石墨烯对C-S-H底物的难度。在纳米级湿度的影响下探索石墨烯对CSH的粘附行为对于理解基本的粘附机制,优化复合材料证明和促进相关学科的发展至关重要。
蛋黄壳结构化硅/碳(YS-SI/C)阳极材料显示出对商用锂离子电池(LIB)的希望,因为它们具有很高的特定容量和出色的循环寿命。但是,尽管研究了近十年,但仍未实现其商业化,这主要是由于机械强度差,速率能力有限和能量密度低。本研究报告了通过热化学蒸气沉积合成的层次YS-SI/C阳极材料,用于垂直石墨烯片的生长(VGS),聚合物自组装和一步碳化,从而通过VGSS建立了SI核心和碳壳之间的连接,从而增强了YS-Chemical和机械的特征。独特的材料的表现优于无VGSS的复合材料,该复合材料在0.1 c时的高特定容量为1683.2 mAh g-1,在10 c时在10 c时的出色速率性能为552.2 mAh g-1,在1000个循环后,较高的速率性能为552.2 mAh g-1,卓越的容量保留率为80.1%。与LINI 0.8 CO 0.1 Mn 0.1 O 2个阴极匹配时,安培小时袋细胞分别提供高重量和大量能密度分别为429.2 WH kg-1和1083 WH l-1。有限元分析表明,VGSS降低了碳壳上的应力浓度,有助于空心材料承受工业电极日历。这项工作证明了在实用液体中YS-SI/C阳极材料的商业应用的潜力。