不提供足够的血糖控制。当已经用雌二鸟和利格林的自由组合处理时。empagliflozin被指出可降低2型糖尿病和既定心血管疾病的成年人心血管死亡的风险。4.2剂量和给药建议的起始剂量(empagliflozin + Linagliptin)片剂的开始剂量为10mg empagliflozin + 5mg linagliptin每天早上一次。每天可以增加一次至25mg雌激素+ 5mg linagliptin,以进行额外的血糖控制。在已经在雌甲氟嗪和利纳列汀的患者中,Empiget-LT(Empagliflozin + Linagliptin)片剂的剂量应提供与患者已经服用的剂量相似的雌激素和Linagliptin的剂量。在启动Empiget-LT(Empagliflozin + Linagliptin)片剂之前:
众所周知,大多数聚合物与石墨烯片的界面兼容性不佳。通过与基质聚合物相同的构建块的小聚合物链进行功能化来修饰石墨烯表面,从而改善了聚合物材料中石墨烯的兼容性。在本文中,使用分子动力学研究了聚合链和聚合物链在拉伸下用聚合物链接枝的石墨烯的聚乙烯纳米复合材料的机械行为。分析了将聚合物链键入石墨烯的官能团(-nH 2和 - OH)的影响。发现包含–NH 2功能组的系统比包含–OH功能组的系统显示出较低的机械性能。研究了五种PEG纳米复合材料的Me Chanical特性:PEG/G,PEG/GNH-1PEG-S,PEG/GNH-2PEG-L,PEG/GNH-1PEG-S-NH 2,PEG/GO-1PEG-S。还检查了半径分布函数值和界面相互作用能的变化。表明,石墨烯片的功能化增加了相互作用能量的大小,并且还揭示了石墨烯表面和PEG矩阵之间的较高粘附。发现PEG的机械性能大多在纵向方向上得到改善(增强高达43%)。尽管纳米填料和PEG基质之间存在很高的相互作用,但纳米熔炉的固有特性低,即Young的模量,以及在变形过程中石墨烯片的破裂降低了纳米复合材料的机械性能。接枝到石墨烯的聚合链的存在改善了石墨烯表面和聚合物基质之间的粘附,但降低了其机械性能。
由于Novoselov和Geim设法隔离了一层石墨烯,显示了该材料的出色特性[1],因此石墨烯研究并没有进一步停止。这无疑已成为过去二十年中研究最多的领域,不仅是石墨烯的性质,而且是该材料与其他元素结合形成基于石墨烯的化合物的多功能性[2]。与石墨烯相关材料的主要合成途径之一涉及石墨烯(GO)。在强氧化剂的帮助下,石墨氧化过程引入了氧化石墨氧化过程,引入了官能团,例如羰基,环氧化物,羟基和羧基,可能存在于边缘和/或石墨烯层的基础平面上[3]。这些组减少了层之间的相互作用,从而增加了它们之间的距离。石墨烯片之间的更大空间有助于去角质,从而形成单层或几层氧化石墨烯[4]。因此,GO是一个用功能组装饰的石墨烯层。这些功能组负责石墨烯片板的功能化及其与其他材料的相互作用[5]。进行化学/热修饰的这种多功能性改变了其特性,使其适用于最多样化的区域,例如聚合物复合材料
氧化石墨烯和还原氧化石墨烯 (RGO) 是广泛应用于生物医学的碳二维纳米材料。它们与真核细胞和原核细胞的独特相互作用可用于实现精确的细胞内递送、创建设备涂层以及设计用于治疗和成像应用的治疗诊断材料,主要用于癌症研究领域。然而,众所周知,RGO 的疏水行为限制了其在生物介质中的稳定性。本文提出了使用抗坏血酸钠 (NaA) 作为还原剂来制备 RGO,以提供一种非常适合用于细胞培养基的纳米材料。通过结合实验和理论的方法证明,NaA 能够产生一种特殊的 RGO 衍生物,发挥双重作用,即在环氧还原时 C sp 2 网络恢复和通过 H 键进行 RGO 边缘功能化,使 RGO 在水基介质中具有迄今为止前所未有的分散性。证明了从 NaA 获得的 RGO 二维层的动力学稳定性及其在药物输送方面的卓越生物相容性,为生物应用释放了巨大的潜力。
在这项工作中,合成了氧化石墨烯(GO)纳米颗粒并随后使用3-氨基丙基三甲氧基硅烷(APTMS)进行了修饰。Anderson型多氧碱[(C 4 H 9)4 N] 2 [CRMO 6 O 18(OH)6],然后将其固定在改良的石墨烯氧化石墨烯纳米颗粒的表面上。The obtained catalyst was characterized using Fourier-transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDS), inductively coupled plasma (ICP), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Raman spectroscopy, and X-ray diffraction (XRD).在基于溶剂的条件下,评估了该可回收混合催化剂的催化性能在75°C下合成了苯咪唑衍生物。混合催化剂表现出易于分离,并且可以成功重复使用至少六次,而所需产品的产量仅略有降低。浸出和恢复测试以及FT-IR分析证实了催化活性物种的高稳定性和催化剂的异质性。
摘要。这项研究探讨了对环保CNC-PALM油,GNP-PALM油以及CNC/GNP-PALM OIL MONO和混合纳米流体的热物理特性的检查。稳定性评估涉及全面的分析,结合了视觉观察和导热率评估。值得注意的是,观察到的杂交混合物的比例升高导致纳米悬浮的稳定性增强,从而确保了纳米材料在碱液体内的均匀分散体长期。结果表明,含有CNC/GNP并用棕榈油配制的杂化纳米流体表现出很大的稳定性。在令人印象深刻的30天持续时间内进行全面的视觉检查显示,累积最小,强调了这些纳米流体的持久稳定性。该研究还检查了关键的热和物理特性,包括有关温度的热导率和粘度。在导热率中看到了最显着的增强,在70°C下,0.1W/V%浓缩的CNC/GNP/GNP/GNP/棕榈油杂化纳米流体的100%增加了100%,与基础流体相比表现出显着改善。此外,粘度有明显的增量,尽管与导热率相比,增强性的增强性更高。这些结果表明,浓度升高之间的直接关系可以提高稳定性和导热率。这项研究为在纳米流体应用中利用CNC/GNP提供了宝贵的见解,这对需要增强的热性能和流体稳定性的田地影响。
摘要:关于添加石墨烯增强体来改善氧化铝 (Al 2 O 3 ) 陶瓷材料微加工性能的研究仍然太少且不完整,无法满足可持续制造的要求。因此,本研究旨在详细了解石墨烯增强体对提高 Al 2 O 3 基纳米复合材料激光微加工性能的影响。为此,使用高频感应加热工艺制备了高密度 Al 2 O 3 纳米复合材料样品,其中石墨烯纳米片 (GNP) 的含量为 0 wt.%、0.5 wt.%、1 wt.%、1.5 wt.% 和 2.5 wt.%。对样品进行激光微加工。之后,研究了 GNP 含量对烧蚀深度/宽度、表面形貌、表面粗糙度和材料去除率的影响。结果表明,纳米复合材料的微加工性能受到 GNP 含量的显著影响。与基础 Al 2 O 3(0 wt.% GNP)相比,所有纳米复合材料的烧蚀深度和材料去除率均有所改善。例如,在更高的扫描速度下,与基础 Al 2 O 3 纳米复合材料相比,GNP 增强样品的烧蚀深度增加了 10 倍。此外,与基础 Al 2 O 3 样品相比,0.5 wt.%、1 wt.%、1.5 wt.% 和 2.5 wt.% GNP/Al 2 O 3 纳米复合材料的 MRR 分别增加了 2134%、2391%、2915% 和 2427%。同样,与基础 Al 2 O 3 相比,所有 GNP/Al 2 O 3 纳米复合材料样品的表面粗糙度和表面形貌都有了显著改善。这是因为 GNP 增强体通过增加光吸收率和热导率并减小 Al 2 O 3 纳米复合材料的晶粒尺寸,降低了烧蚀阈值并提高了材料去除效率。在 GNP/Al 2 O 3 纳米复合材料中,0.5 wt.% 和 1 wt.% GNP 样品在大多数激光微加工条件下表现出优异的性能,缺陷最少。总体而言,结果表明,使用基本光纤激光系统(20 瓦)和非常低功耗,可以高质量、高生产率地加工 GNP 增强 Al 2 O 3 纳米复合材料。这项研究表明,在氧化铝陶瓷基材料中添加石墨烯以提高其可加工性具有巨大的潜力。
自从分离出来以来,石墨烯就因其独特的性质而受到学术界和工业界越来越多的关注。然而,“我的材料是什么”的障碍阻碍了进一步的商业化。X 射线光电子能谱 (XPS) 被认为是一种确定元素和化学组成的首选方法。在这项工作中,研究了石墨烯颗粒形貌对 XPS 结果的影响,并调查了其作为 X 射线能量的函数的关系,使用具有 Al K 𝜶 辐射的传统 XPS 和使用 Cr K 𝜶 辐射的硬 X 射线光电子能谱 (HAXPES)。因此,信息深度在 10 到 30 纳米之间变化。为此,对两种含有石墨烯纳米片的商业粉末进行了比较,它们的横向尺寸约为 100 纳米或在微米范围内。这些较大的粉末以石墨烯层堆栈的形式存在,用扫描电子显微镜进行检查。然后用氧或氟对这两种粒子进行功能化。发现石墨烯颗粒的尺寸会影响功能化程度。只有 XPS 和 HAXPES 的结合才可以检测颗粒最外层表面甚至堆叠层的功能化,并为功能化过程提供新的见解。
