近年来,由于其独特的特性以及在气体和生物传感器中的潜在应用,对磁石墨烯(MGO)的兴趣显着增加。在本评论文章中给出了MGO合成技术的广泛摘要,例如化学还原,水热合成和溶剂热合成。及其在气体和生物传感器中的许多用途,MGO的灵敏度,选择性和稳定性也被突出显示。除了可以鉴定氨,硫化氢和挥发性有机化合物的气体传感器外,MGO还可以用作鉴定蛋白质,葡萄糖,胆固醇和DNA的生物传感器。文章的结论讨论了该领域的未来方向以及在各个行业的MGO研究中的可能应用。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
首席研究者已经对GO纳米片的基本物理特性和应用进行了研究。在GO纳米片和GO膜中的离子电导率中,我们发现离子电导率超过了Nafion的电导率。在还原形式的情况下,RGO,还通过还原方法成功控制了P型,N型和解体半导体特性的降低形式。此外,GO的氧官能团是负电荷的,杂种是通过与各种金属离子的静电相互作用形成的,并且发现以RGO杂种,金属氧化物和金属纳米颗粒的降低形式在RGO纳米片上支持。在GO和RGO纳米片的合成中,使用液体等离子体掺杂了各种原子,并且通过热液合成和Freeze-Drysing从GO和RGO纳米片形成的3D结构也成功。因此,着重于研究获得的材料中的钻石相变,我们首先合成了N-RGO的氮掺杂钻石。尽管结果是初步的,但我们观察到在纳米颗粒相中T C = 30 K的Meissner效应,而在大量相中,T C = 130 K。此外,从高温和高压在高压中合成的钻石显示出T C = 65 K的铁磁过渡。此外,它们还致力于合成硼掺杂和氧气掺杂的钻石。这些结果表明,在掺杂的钻石中开发各种功能材料的有效性,并且有必要迅速促进掺杂或表面修饰的钻石的研究和开发。
已经考虑了两种不同的模型,即卵烯 (C 32 H 14 ) 和环环烯 (C 54 H 18 ) 及其各自的掺杂模型 (C 31 XH 14 、C 53 XH 18,其中 X = B、Al、N、P、Fe、Ni 和 Pt),用于 GGA-PBE/DNP 级别的 DFT 计算。根据各种计算出的结构参数和电子特性对这两个模型进行了比较。还绘制了电子态密度 (DOS) 光谱,以查看尺寸增加时电子特性的变化。从较小的模型移动到较高的模型时,结构和电子特性没有发生重大变化。发现掺杂保持了表面的平面性,但会引起掺杂原子周围键长发生相对较大的变化,从而削弱键。版权所有 © VBRI Press。关键词:DFT、石墨烯、掺杂、DOS。简介
如此严重的化学取代会扰乱自发极化的幅度和方向,以及 BiFeO 3 的结构和畴结构。[10–12] 因此,与纯 BiFeO 3 相比,La 取代的 BiFeO 3 中的畴结构高度随机化。此外,晶体对称性从菱面体变为单晶。[10,11,13] 规则 BiFeO 3 条纹畴结构的丧失可能会影响与应用相关的特性,例如前述磁电开关过程。由于任何铁性材料的功能都受其畴操纵的支配,因此对集成到电容器架构中的 La 取代 BiFeO 3 进行非侵入性操作研究对于了解取代诱导的畴结构的影响至关重要
具有低能量极化切换的半导体铁电材料为铁电场效应晶体管等下一代电子产品提供了平台。最近在过渡金属二硫属化物薄膜双层中发现的界面铁电性为将半导体铁电体的潜力与二维材料器件的设计灵活性相结合提供了机会。这里,在室温下用扫描隧道显微镜展示了对略微扭曲的 WS 2 双层中铁电畴的局部控制,并使用畴壁网络 (DWN) 的弦状模型了解它们观察到的可逆演化。确定了 DWN 演化的两种特征机制:(i) 由于单层在畴边界处相互滑动,部分螺旋位错的弹性弯曲将具有双堆叠的较小畴分开;(ii) 主畴壁合并为完美的螺旋位错,这些位错成为反转电场后恢复初始畴结构的种子。这些结果使得利用局部电场对原子级薄半导体铁电畴进行完全控制成为可能,这是实现其技术应用的关键一步。
铁电体中的非均匀极化纹理为丰富的新材料物理学提供了沃土。非均匀极化分布的含义之一是在极化不连续处或一般在极化矢量场发散非零的点处出现束缚电荷。束缚电荷会感应出能量耗费很大的电场。因此,无论极化分布多么复杂,系统都倾向于保持其内部的电中性。那么中性意味着要么极化矢量场应该无发散,要么束缚电荷应该受到半导体性质的自由载流子的屏蔽。非均匀且几乎无发散的极化纹理主要见于多轴铁电体 [1,2],其中自发极化矢量可以旋转。
铁电体中的非均匀极化纹理为丰富的新材料物理学提供了沃土。非均匀极化分布的含义之一是在极化不连续处或一般在极化矢量场发散非零的点处出现束缚电荷。束缚电荷会感应出能量耗费很大的电场。因此,无论极化分布多么复杂,系统都倾向于保持其内部的电中性。那么中性意味着要么极化矢量场应该无发散,要么束缚电荷应该受到半导体性质的自由载流子的屏蔽。非均匀且几乎无发散的极化纹理主要见于多轴铁电体 [1,2],其中自发极化矢量可以旋转。
随着体积自旋转移矩 (STT) [11,12] 和自旋轨道矩 (SOT) [13–16] 机制的进步,电流诱导畴壁 (DW) 运动 (CIDWM) 已从平面磁性 [8] 演变为合成反铁磁 (SAF) [9,10] 赛道。在铁磁体/重金属 (HM) 界面处存在破缺的反演对称性时,自旋轨道耦合产生手性自旋矩,[17] 驱动 Néel 畴壁运动,具有强垂直磁各向异性 (PMA) 的薄膜,由铁磁体/HM 界面处的 Dzyaloshinskii-Moriya 相互作用 (DMI) 稳定,[18] 可以沿电流方向以高速移动 [12,15,19],既可以沿直线赛道,也可以沿曲线赛道移动。 [20] 据报道,SAF 赛道中存在一种更高效的 DW 运动,该赛道由两个垂直磁化的铁磁子赛道组成,它们通过超薄钌层反铁磁耦合。[10] SAF 结构中的巨大交换耦合扭矩 (ECT) 提供了一种额外的主导驱动机制,允许将 DW 传播速度提高到 ≈ 1000 ms − 1 以上。[10,21] 稀土-过渡金属合金中的 ECT 在亚铁磁合金的角动量补偿温度下进一步最大化。[22,23] 最近,在某些磁绝缘体中也发现了高效的 CIDWM。[24]