减薄硅芯片在柔性基板上的倒装芯片组装 Tan Zhang、Zhenwei Hou 和 R. Wayne Johnson 奥本大学 阿拉巴马州奥本 Alina Moussessian 和 Linda Del Castillo 喷气推进实验室 加利福尼亚州帕萨迪纳 Charles Banda 物理科学实验室 摘要 将减薄硅芯片(25-100 µ m)组装到柔性基板上为从智能卡到太空雷达等各种应用提供了超薄柔性电子产品的选择。对于高密度应用,可以通过堆叠和层压预组装和测试的柔性层然后处理垂直互连来制造 3-D 模块。本文介绍了将减薄芯片倒装芯片组装到聚酰亚胺和液晶聚合物 (LCP) 柔性基板上的工艺。已经开发出两种用于聚酰亚胺和 LCP 柔性基板的组装方法。在第一种方法中,将焊料凸块芯片回流焊接到图案化柔性基板上。需要使用夹具在回流期间保持柔性基板平整。回流之后是底部填充分配和固化。底部填充分配工艺对于避免底部填充流到薄硅片顶部至关重要,我们将在下文中讨论这一工艺。在第二种方法中,通孔通过聚酰亚胺或 LCP 蚀刻,露出接触垫的底面。将焊膏挤入通孔,回流并清洗,在通孔中形成焊料“凸块”。对浸焊产生的具有低轮廓焊料凸块的芯片进行焊剂处理、放置和回流。然后对芯片进行底部填充。这种方法可降低总组装厚度。简介为了满足单芯片和堆叠芯片封装中不断降低的轮廓要求,正在开发薄芯片的组装工艺。1-4 柔性基板(25-50 µ m)提供了一种进一步减小封装厚度的方法。减薄的 Si-on-flex 结构也有利于太空应用。减薄的 Si 虽然易碎,但也很灵活。减薄的 Si-on-flex 可以卷成管状进行发射,并在太空中展开,从而形成带有集成电子设备的大面积天线。组装减薄的 Si-on-flex 必须解决的问题包括:基板设计和制造、减薄后的凸块、芯片处理、回流期间的基板平整度和底部填充分配。这些将在以下章节中讨论。基板本工作中使用了两种柔性基板材料:聚酰亚胺和液晶聚合物 (LCP)。LCP 特性包括 100GHz 下的良好介电性能、低吸湿性和极低的透湿性。5-13 LCP 的热膨胀系数 (CTE) 可以在 LCP 薄膜的双轴挤出过程中控制。市售薄膜的 CTE 为 8 和 17ppm/o C。在本工作中使用 8ppm/o C LCP 薄膜。在用于倒装芯片组装的传统柔性基板设计中,铜芯片连接点的图案化位置与芯片组装位置在柔性薄膜的同一侧(图 1)。阻焊层用于定义可焊焊盘区域(顶面设计)。另一种方法是蚀刻聚酰亚胺或 LCP 通孔,露出铜焊盘的底面(背面设计)。通孔通过激光钻孔或反应离子蚀刻 (RIE) 制成。倒装芯片从铜图案的对面组装(图 2),从而无需阻焊层并减小了总厚度。这种方法的另一个优点(低轮廓凸块)将在后面介绍。顶面聚酰亚胺基板由约翰霍普金斯大学应用物理实验室制造,而激光钻孔背面 LCP 设计由 STS ATL 公司制造。背面 (RIE) LCP 和聚酰亚胺基板由奥本大学制造。只需一层金属即可布线菊花链芯片互连图案。
摘要 激光金属沉积 (LMD) 模拟对于增材制造工艺规划至关重要。本文介绍了 LMD 的 2D 加厚度非线性热模拟的计算实现,其中考虑:(i) 与温度相关的材料特性,(ii) 由于对流和辐射引起的热损失,(iii) 材料沉积过程中的几何更新,(iv) 相变和 (v) 激光与基材之间的相互作用。该实现计算与激光轨迹垂直的横切面上的温度场历史和焊珠积累的历史。材料沉积模型基于输送粉末的空间分布。本文介绍了对生长焊珠进行有效局部重新网格划分的数学和数值基础。将焊珠几何形状的数值估计与现有文献中的实验结果进行了比较。本模型对预测焊珠宽度(误差 15%)和焊珠高度(误差 22%)具有合理的精度。此实施为内部实施,允许纳入额外的物理效应。需要进行额外的工作来考虑基材上的粒子(热)动力学,这会导致大量的材料和能源浪费,进而导致在执行的模拟中高估实际温度和熔融深度。
林肯电气焊接学校 焊接学校概述 .......................。。。。。。。。。。。。。。。。。。。。。。。。.....................6 焊接学校课程表 ...。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.............7-8 标准课程 焊接入门 ...........。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.9 基础板和钣金。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 管道焊接。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11-12 等离子、火焰、合金和堆焊。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 钨极气体保护焊。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 熔化极气体保护焊 - 半自动。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 药芯焊丝电弧焊 - 半自动。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16 综合计划。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 高级课程赛车运动 - 基础材料计划。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18 赛车运动 - 先进材料计划。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19 基本埋弧焊。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。20 高级埋弧焊。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.21 高级 API 管道焊接。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.22 GTAW (TIG) 管。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.23 CWI 预备课程、研讨会和考试。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.......24 资格和认证培训 ...............。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。25
摘要 银线近年来已成为一种新型键合材料,但用户和现场工程师对其可靠性性能问题(包括故障机理和金属间化合物 (IMC) 形成)仍然存在分歧。本研究介绍了一种新型高纯度 96Ag-3Pd-1Au 合金(96% Ag)银线,并通过键合性和可靠性测试评估了其在铝键合焊盘上的键合性能。用于表征银线特性的可靠性测试包括高温储存寿命测试 (HTST) 和带温度和湿度的无偏高加速应力测试 (uHAST)。使用了两种具有不同氯离子含量的模具化合物。绿色化合物的氯离子含量低于 10 ppm,普通化合物的氯离子含量低于 27 ppm。对 HTST150'C 和 175'C 下 2000 小时的键合性、IMC 形成(Ag 2 Al、Ag 3 Al)和生长速率进行了测量,并根据 uHAST 的微观结构表征确定了可能的失效机制,其中由于原电池反应和 Cl- 离子在足够的水分和热能下发生重复的氧化和还原反应,而 Ag-Al IMC 和 Al 垫的还原反应导致形成微裂纹失效。
自 1958 年 12 月以来,巴特尔纪念研究所根据合同号进行了研究。NObs-77028、NObs-84738 和 NObs-92521,以确定氢致开裂技术是否可用于研究焊件(尤其是复杂焊件)中的残余应力。利用氢致开裂技术,焊接件由具有足够延展性的钢制成,因此在焊接过程中不会形成裂纹。焊接后,焊件通过电解氢气充电,使材料变脆,以至于残余应力形成裂纹。残余应力的分布是根据裂纹模式估计的。除了实验研究外,还进行了分析研究以确定残余应力分布与裂纹模式之间的关系。
自 1958 年 12 月以来,巴特尔纪念研究所根据合同号进行了研究。NObs-77028、NObs-84738 和 NObs-92521,以确定氢致开裂技术是否可用于研究焊件(尤其是复杂焊件)中的残余应力。利用氢致开裂技术,焊接件由具有足够延展性的钢制成,因此在焊接过程中不会形成裂纹。焊接后,焊件通过电解氢气充电,使材料变脆,以至于残余应力形成裂纹。残余应力的分布是根据裂纹模式估计的。除了实验研究外,还进行了分析研究以确定残余应力分布与裂纹模式之间的关系。
使用各种悬臂探针针尖多次探测具有薄焊盘铝 (Al)(厚度小于 0.7µ)的 IC 键合焊盘。探针标记由具有各种针尖直径的实验性高强度探针卡创建。将探针针尖的有限元模型与探针标记擦洗长度相匹配,以更学术地了解随着探针参数的变化会发生什么。使用此模型进行模拟将有助于未来进行物理实验困难或成本高昂的情况。实验中的键合焊盘包括各种安森美半导体电路焊盘下 (CUP) 结构,该结构具有 Al 金属化和二氧化硅 (SiO 2 ) 互连,先前已证明与传统 IC 键合焊盘相比具有更强的抗开裂能力。随着未来产品的焊盘缩小,更小的球尺寸和键合接触面积是可取的,但这会加剧探针标记的任何不利影响,因为键合下方的相对面积百分比会增加。实验评估包括对各种探针标记范围内不同球直径的金 (Au) 球键合的键合拉力强度 (BPS) 和键合剪切力 (BS),以开始检查引线键合中惯常的“探针标记面积”最大限制的有效性。数据表明,大而深的探针标记确实会导致键合球提升失败,尤其是对于未优化的键合配方。看来探针标记深度,而不是面积,是键合可靠性中最不利的因素。在更受控制和“温和”的制造情况下,预计不会出现与探针标记键合相关的问题。