朱丽叶·夏本(Juliette Charbonnel),纳塔恰(Natacha Darmet),克莱尔·德里斯(Claire Deilhes),洛迪维奇·布奇(Lodivic Broche),城市雷蒂尔(City Reytier)等。全稳态蛋糕的安全评估:一种创新的方法论,它是一种使用situ synchrotrotron x射线广播的创新方法。ACS应用能源材料,2022,̿10.1021/acsaem.2C01514。̄̄̄2378188
朱丽叶·夏本(Juliette Charbonnel),纳塔恰(Natacha Darmet),克莱尔·德里斯(Claire Deilhes),洛迪维奇·布奇(Lodivic Broche),城市雷蒂尔(City Reytier)等。全稳态蛋糕的安全评估:一种创新的方法论,它是一种使用situ synchrotrotron x射线广播的创新方法。ACS应用能源材料,2022,̿10.1021/acsaem.2C01514。̄̄̄2378188
射线照相介绍。基本的道德原则;同意和射线照相的历史。专业角色,职责和行为准则。交流简介:人际关系和科学。团队合作。反思过程。立法简介和与射线照相实践有关的专业机构(国家和国际)。护理患者。感染控制原则。病理状况。成像方式和过程的概述。辐射人员监测 - 要求,监视方法,记录保存,辐射保护官的责任。实用的辐射保护设施设计;安全配件设备;安全设备。
代码:BHDRD1 SAQA ID:94832 X射线照相是射线照相的创建;通过将摄影膜或其他图像受体暴露于X射线来制作的照片。由于X射线穿透了固体物体,但被它们略微减弱,因此暴露导致的图片揭示了对象的内部结构。X射线照相仪应能够应用适用于临床表现的科学知识和技术,以在所选选修课中生产最佳图像质量;能够考虑设备,人力资源,质量保证和医疗保健需求,以计划,开发和应用全面的质量管理;能够管理射线照相服务;能够运用研究技能和原则,并能够将先进的道德原则应用于日常实践。
单层石墨烯(SLG)的唯一光电特性非常适合从X射线到微波的广泛频率开发光子设备。在Terahertz(THZ)频率范围(0.1-10 THz)中,这导致了具有最先进性能的光学调节器,非线性源和光电探测器的发展。关键挑战是以可扩展的方式将基于SLG的活动元素与先前存在的技术平台集成在一起,同时保持绩效水平不受干扰。在这里,我们报告了由大区域SLG制成的室温THZ探测器,由化学蒸气沉积(CVD)生长,并集成在天线偶联的场效应晶体管中。我们有选择地激活光电电检测动力学,并在Al 2 O 3上采用不同的SLG的不同介电配置,而有无大区域CVD六角形氮化硼氮化物限值来研究其对SLG热电学适当的影响基础光照相的影响。使用这些可扩展体系结构,响应时间5 ns和噪声等效功率(NEP)1 NW Hz 1/ div>
将在整个放射线照相计划中为学生提供适当的辐射保护程序的建议和培训。建议学生在成像过程中不要容纳患者或图像受体。非放射工人。学生必须在成像程序中保护患者和自己。接触到实时X射线梁时,始终使用适当的屏蔽。学生在预定的临床轮换过程中必须佩戴适当的辐射徽章。学生在曝光期间在实验室中在实验室中的能量实验室中进行曝光时,还必须佩戴辐射监测徽章。在学院的充满活力的实验室中,学生永远不会接触到直接的X射线梁。仅在大学实验室的直接监督下,只能在注册射线照相的教练的直接监督下进行暴露。学生在大学实验室进行任何现场直播时,必须始终戴上辐射检测徽章。
www.ivytech.edu \ terrehaute MRI是一种复杂的诊断成像方式,可捕获患者的横截面图像。MRI最常用于评估大脑的许多类型的疾病过程,损伤和功能。MRI技术专家是医疗团队不可或缺的成员,他熟练使用复杂的诊断成像设备执行横截面图像。该医疗保健专业人员与患者,技术人员和医疗保健团队的许多其他成员紧密合作。MRI技术人员可以在许多住院和门诊医疗机构中使用,包括创伤中心,医院或诊断成像中心。Ivy Tech在课程完成后为继续的学生提供证书,或者仅针对就业的专业人士提供证书。要准备测试,MRI候选人进行注册和认证必须至少记录16个小时的结构化教育。为了申请MRI技术计划,候选人需要接受射线照相的认证和注册,核医学(也接受通过NMTCB进行注册),放射治疗或SONOPHICON或SONOPHICONS(通过ARDMS进行注册)也被接受或计划主席批准。该MRI技术计划是一个在线计划,其注册有限。申请人将被考虑,直到满足班级最大入学率和/或学期开始为止。请联系计划主管以获取可用性。。
近年来,眼科引起了科学界和临床界的广泛关注。全球老龄化人口中眼科疾病的数量正在增加。在许多情况下,通过早期发现和及时采取行动可以预防失明。自 2016 年发表了几篇关于使用深度学习筛查糖尿病视网膜病变 (DR) 的开创性著作以来,人工智能研究,尤其是深度学习,在眼科领域蓬勃发展 (6-8)。眼科诊断很大程度上依赖于影像检查。随着光学相干断层扫描 (OCT) 和眼底照相的广泛应用,基于人工智能的深度学习方法可以快速、无创地评估大量图像数据集并识别、定位和量化疾病特征 (9-11)。最初,大多数眼科人工智能研究集中在后段疾病上,例如 DR、老年性黄斑变性 (AMD)、青光眼和早产儿视网膜病变 (ROP) (7,12,13)。近年来,人工智能在眼前节疾病及影像学方面的研究不断涌现(14-16)。基于图像识别的医疗辅助诊断系统有利于开展大规模人群疾病筛查,提高临床工作效率,为缓解医疗资源短缺提供新思路。此外,人工智能与远程医疗的结合,也正在成为解决医疗资源短缺的另一种可行方案(17)。
无机闪烁体可以用高能量吸收电离辐射,以瞬时将其转换为低能的光子。(1-3)利用此功能,通过将光电遗传学与可以将光子转换为电信号转换为电信号的光探测器将闪烁体应用于辐射探测器。(4,5)闪烁检测器根据其应用而分为电流和光子计数模式测量值。(6,7),尤其是当前模式类型的检测器集成了一毫秒的信号,并已用于X射线计算机断层扫描(CT)和X射线射线照相的应用中。(8)当前模式类型的闪烁体需要高发射强度,大的有效原子数(z eff),高密度(ρ)和低余辉水平(AL)。但是,由于没有闪烁器满足所有必需的属性,因此已经开发出新的闪烁体。(9-14)基于HFO 2的化合物,例如RE 2 HF 2 O 7(RE = LA,GD,LU)和AE HFO 3(AE = CA,SR,BA)引起了人们的注意,因为它们的大Z eff和Highρ。在先前关于基于HFO 2的闪烁体的报告中,只有Z EFF(65.2)和ρ(6.95 g/cm 3)的Cahfo 3显示出闪烁的光屈服于10,000光子/MEV。(15–21)此外,我们的研究小组研究了用Ti,CE,PR,TB和TM掺杂的Cahfo 3的闪烁特性,(18,21-26)