压水核反应堆和熔盐热能存储耦合的排名方法 2 3 Jaron Wallace *a、CJ Hirschi a、Cameron Vann a、Matthew Memmott a 4 5 a 杨百翰大学 6 7 * 通讯作者 8 jaron.a.wallace@gmail.com 9 PO Box 490, Mona, UT 84651 USA 10 11 12 摘要 13 14 热能存储 (TES) 系统是解决电力市场需求波动的一种方案,可与核电站耦合以实现负荷跟踪。这项工作侧重于开发一种方法来评估将 TES 17 系统集成到现有压水核电站的潜在设计。拟议的排名方法允许一组专家根据从文献中得出的排名标准来假设和权衡设计 19。本研究中开发的方法有助于最终选择现有核电站的 TES 设计。相同的过程可用于分析其他 TES 和核反应堆设计。通过该方法确定的最佳设计是将 TES 系统置于蒸汽发生器之后,并利用核电站产生的蒸汽来加热熔盐 TES 装置。本研究的另一个结论是,在设计选择过程中普遍存在人为偏见,应使用标准化排名标准和大型专家组等措施来最大限度地减少这种错误。 关键词 热能存储、核电、设计选择、灵活能源系统、核能 混合能源系统 引言 在目前的核电站群中,每个反应堆的功率水平无法以匹配全天波动的能源需求所需的上升率波动 [1]。随着可再生能源在电力市场的渗透率不断提高,对非可再生能源的需求上升率也越来越高,也越来越明显 [2]。图 1 显示了这一现象,也称为“CAISO 鸭子图”。该图显示了加州一天内非可再生能源所需的能量,并显示了多年的能源需求。40 41
• 在传统蒸汽发电厂中增加存储(和电转热) • …提高灵活性(特别关注热电联产) • …纳入可再生能源(例如,改造燃煤电厂,附加 CSP)
• 质量:将样品质量增加到 4-11 克(更高的炉子,更高的样品)• 半径:先用水测量半径,再用盐测量• 高度:更高的样品管(~30 厘米)• 像素分辨率:更高质量的相机、图像堆叠、图像减法。 开发一种更高通量的推杆膨胀法——最近在液态盐容器方面取得了成功(定制石墨支架) 为钚做准备……
使命:开发技术基础,使 MSR 能够安全、经济地运行,同时保持高水平的抗扩散能力。1) MSR 可以提供美国到 2050 年实现净零碳排放所需的大部分能源;2) 在可预见的未来,全世界都需要丰富的能源。
本报告是由美国政府某个机构资助的工作报告。美国政府、其任何机构及其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,或承担任何法律责任或义务,亦不保证其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定的商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或偏爱。本文表达的作者的观点和意见不一定表明或反映美国政府或其任何机构的观点和意见。
自 2011 年首次合成 MXene 以来,MXene 的安全且可扩展的生产一直是一个重要但难以实现的目标 1 。MXene 是二维纳米材料,通式为 M n+1 X n T z ,其中 M 是早期过渡金属(通常是 Ti、Nb 或 V),X 是碳和/或氮,T z 代表表面终止(例如 -F、-Cl、-OH、-O)。MXene 源自一种称为 MAX 相的母材料,该母材料将 M-X 与来自周期表 13-16 2,3 族的层间 (A) 元素结合在一起。已经合成了 50 多个 MAX 相;但是,只有一些 MAX 相可以通过传统的酸蚀技术剥离成感兴趣的二维 MXene 纳米片。之前的研究大多集中在 Ti 基 MXenes 上。MXene 纳米片可用于储能、催化、EMI 屏蔽、传感器和复合材料 4-10 等一系列应用。高浓度氢氟酸 (HF) 通常用于从 MAX 相中选择性去除 A 层以生产 MXenes。其他方法通常使用盐形成原位 HF 溶液,例如将氟化锂 (LiF) 和盐酸 (HCl) 结合或使用氟化氢铵 (NH 4 )HF 2 1,11 。然而,使用水性氟化物蚀刻剂具有许多固有的风险和挑战。与处理 HF 相关的危害使得 MXene 合成工艺难以扩大到商业水平。酸蚀 MXene 合成路线的另一个缺点是废物管理 12 。此外,传统的 HF 酸蚀技术仅限于少数 MAX 相,因此需要
1996 年 1 月 1 日之后发布的报告通常可通过 OSTI.GOV 免费获取。网站 www.osti.gov 公众可以从以下来源购买 1996 年 1 月 1 日之前制作的报告: 国家技术信息服务 5285 Port Royal Road Springfield, VA 22161 电话 703-605-6000(1-800-553-6847)TDD 703-487-4639 传真 703-605-6900 电子邮件 info@ntis.gov 网站 http://classic.ntis.gov/ 能源部员工、能源部承包商、能源技术数据交换代表和国际核信息系统代表可以从以下来源获取报告: 科学技术信息办公室 PO Box 62 Oak Ridge, TN 37831 电话 865-576-8401 传真 865-576-5728 电子邮件 reports@osti.gov 网站 https://www.osti.gov/
氯化物盐具有在高达 800 C 的极高温度下使用的巨大潜力(例如 MgNaK//Cl 混合物),但也可用作低熔点 HTF,例如共晶 ZnNaK//Cl(T m = 200 C)的情况。[12] 由于具有足够的热容量,氯化物盐是熔融盐催化转化过程中最有前途的 HTF。 尽管如此,其化学性质也带来了技术挑战。 在热能存储领域,由于氯化物盐在高温下对金属合金的腐蚀性质,人们对其进行了深入研究。 人们普遍认为,腐蚀机理受许多参数的影响,主要是温度、盐纯度以及主要基于氧和/或水分的杂质的存在(例如,参见 Ding 关于熔融氯化盐腐蚀的综述 [12])。在未来的热能存储中发挥重要作用的MgCl 2基熔盐中,主要的腐蚀性杂质已被鉴定为羟基氯化物(MgOHCl),并且假定它是水合MgCl 2水解的产物。 [12,13]可以使用不同的方法显着降低杂质水平,例如电解盐净化[14]或添加牺牲剂,例如元素Mg,[15]与杂质反应形成惰性MgO。以类似的方式,添加固体氧化物(例如ZnO和CaO)可显着减少
将基于先进吸收式制冷机的高效热制冷技术以及可选的其他服务集成到供热和制冷网络中,需要能够在 100 ºC 以上的温度下输送能量(这是水存储的物理极限)。因此,到目前为止,只有可管理的能源(如化石能源(天然气或煤炭)和生物质)才能满足需求,例如,性能系数 (COP) 大于 1 的双效吸收式制冷机。将间歇性热能源(如太阳能)集成到中温应用中,需要开发基于在此温度范围内(即 130 至 300 ºC 之间)性能稳定的流体的存储选项。
