摘要:几何特征是表征激光直接沉积质量的重要手段,提高预测模型的精度有助于提高沉积效率和质量。模型主要输入变量为激光功率、扫描速度和送粉速率,输出变量为熔轨宽度和高度。应用基于径向基函数(RBF)的多输出支持向量回归(M-SVR)模型,建立了熔轨几何特征预测的非线性模型。采用正交试验设计进行试验,随机选取试验结果作为训练和测试数据集。一方面,与单输出支持向量回归(S-SVR)建模相比,该方法将高度预测的均方根误差降低了22%,且训练速度更快,预测精度更高;另一方面,与反向传播(BP)神经网络相比,宽度的平均绝对误差降低了5.5%,平均绝对误差更小,泛化性能更好。因此,建立的模型可以为精确选择直接激光沉积工艺参数提供参考,提高沉积效率和质量。
摘要:选择性激光熔化(SLM)是一种金属粉末融合添加剂制造工艺,具有为航空航天和生物医学植入物制造复杂组件的潜力。大规模适应受到阻碍。非均匀熔体池尺寸是这些缺陷的主要原因。由于先前的粉末床轨道加热而导致的熔体池尺寸变化。在这项工作中,对相邻轨道产生的热量的效果进行了建模,并设计了反馈控制。控制的目的是调节熔体池横截面区域,以拒绝粉末床内相邻轨道的热量的影响。SLM过程的热模型是使用集总池体积的能量平衡开发的。将来自相邻轨道的干扰热建模为熔体池的初始温度。将热模型与干扰模型结合起来,导致了一个非线性模型,描述了熔体池的演化。PID是一种经典的反馈控制方法,用于最大程度地减少轨道干扰对熔体池面积的影响。在已知的环境中为所需的熔体池区域调整了控制器。仿真结果表明,在扫描16毫秒内的粉末层多个轨道的扫描过程中,所提出的控制器调节所需的熔体池面积,并在0.04 mm的长度内将激光功率降低了10%,大约在五个轨道中。这减少了孔形成的机会。因此,它提高了使用SLM工艺制造的组件的质量,从而减少了缺陷。
在过去的几十年中,南极冰盖对海平面上升的贡献一直在增加,预计这种增加会随着温室气体排放的增加而持续(Fox-Kemper等人,2021年)。大部分质量损失发生在冰盖的边缘,通过从接地冰盖到海洋的冰块流动,主要是在南极西部(Khazendar等,2016; Mouginot等,2014; Mouginot et al。,2014; Rignot et al。这是因为冰盖边缘的浮冰搁架(通常是支撑冰流的支撑)迅速变薄并由于其底部的海洋引起的融化而撤退(Adusumilli等,2020; Paolo等,2015; Rignot et al。,2013)。在某些基岩配置中,增加了海洋诱导的熔体甚至会触发海洋冰盖不稳定性(Gudmundsson等,2012; Schoof,2007; Weertman,2007; Weertman,1974),这有可能强烈增加南极质量损失,在一个世纪以下的时间范围内(Fox-Kemper等人,20221年)。这使海洋引起的子架融化或基底融化是未来海平面上升的未来预测的主要不确定性之一。
激光作为热源用于表面改性、焊接、熔覆、定向能量沉积 (DED) 等多种材料加工应用,由于其固有特性而广受欢迎,即易于产生高功率密度、快速加热和冷却速率 (10 3 –10 6 C/s),同时将热影响区和变形降至最低。在这些应用中,DED 是一项相对较新的技术,由于其能够直接从 CAD 模型逐层沉积复杂组件,因此在世界范围内得到了广泛的研究。然而,该过程由于在积聚过程中的热积累而受到各向异性的影响,从而影响最终的微观结构、力学性能和几何完整性 [1]。已有多项研究报告了量化与峰值温度、熔池大小等有关的热积累,并控制工艺参数以实现均匀性。Song 和 Mazumder [2] 使用双色高温计开发了一种基于熔池温度的控制系统。根据温度变化调节激光功率,以改善表面和几何完整性。Ding 等人 [3] 通过感应和控制粉末流速和熔池尺寸,开发了一种机器人激光 DED 系统中的几何再现性实时反馈系统。
粒径增加了这些粒子的效率[18]。因此,粒径和非聚集性非常重要FE-SEM和直方图的结果显示大多数PMA-DDA-DOX粒子小于55纳米,这对于药物载体来说是合适的尺寸。在图4中,缓释使PMA-DDA-DOX粒子有时间到达肿瘤细胞,并在到达肿瘤细胞后以几乎均匀的速率释放DOX,从而使药物的浓度在靶组织周围维持更长时间[19]。DDS最关键的方面之一是将药物递送到靶组织,这一因素与治疗和减少药物副作用直接相关[20,21]。通过选择合适的药物载体,如PMA-DDA-DOX,可以增强DOX的疗效,它显著地在肿瘤周围聚集
图 1:A) 由金属节点和有机配体组成的金属有机骨架的简化示意图,可在各个方向无限扩展。B) 说明了 ZIF-8 的晶体超结构。C) 合成过程的概念化表明,在与 Zn 2+ 和 2-甲基咪唑 (HMIM) 孵育后,大肠杆菌外膜表面可以启动 ZIF-8 在膜结合生物大分子上和周围的生长。D) ZIF 封装的 UPEC 菌株 CFT073 (CFT@ZIF) 的扫描电子显微照片(左),可在 pH 为 5 的乙酸钠缓冲液 (AB) 中轻轻取出以露出整个细菌,如透射电子显微照片(右)所示。白色比例尺为 1 µm,白色箭头表示自由的 ZIF 晶体。E) CFT@ZIF 与原始/空 ZIF-8 的粉末 X 射线衍射比较,显示测量数据与原始 ZIF-8 的模拟 PXRD 光谱相匹配。 F)细菌生长试验表明,CFT@ZIF 在剥离后无法存活,类似于福尔马林固定或热处理,可用作灭活细菌的方法。虚线表示检测限为 100 CFU/mL。
1. 简介和文献综述 金属增材制造 (MAM) 是一种 3D 打印技术,对各个行业(例如航空航天、生物医学、能源)影响最为显著 (Armstrong 等人,2022 年)。根据 ASTM/ISO 52900:2021(ISO ASTM 标准 2021),MAM 分为以下类别:材料挤出 (MEX)、材料喷射 (MJ)、粘合剂喷射 (BJ)、粉末床熔合 (PBF)、定向能量沉积 (DED)、板材层压 (SL) 和瓮聚合 (VPP)。PBF 是最广泛的工艺技术,因为它成熟且精度高 (Mandolini 等人,2022 年),覆盖了 85% 的 MAM 市场 (AMPOWER GmbH & Co 2020 年)。另一方面,PBF 机器复杂且价格昂贵。最近,金属 MEX(M-MEX)因其以下优点而备受关注:成本低(例如台式系统)、设备简单(用户友好性)、潜在危害少(例如没有金属粉末损失)、电源有限(与 PBF 或 DED 相比)和环境可持续性增强(Suwanpreecha 和 Manonukul 2022;Bianchi 等人 2022)。另一方面,M-MEX 的主要缺点涉及线材(例如粘合剂类型的选择)及其生产工艺(例如合适的混合程序)。要求保证线材的高质量,以保证 3D 打印部件的最终形状、尺寸、尺寸和属性(Suwanpreecha 和 Manonukul 2022)。 M-MEX 也称为 mFFF(金属熔丝制造,(Bankapalli 等人,2023 年))、FDMet(金属熔融沉积,(Bankapalli 等人,2023 年))、金属 FDM(Ramazani 和 Kami,2022 年)、MF3(金属熔丝制造,(Singh 等人,2020 年)),其灵感来自 MIM(金属注射成型)和 FFF(熔丝制造)(Bankapalli 等人,2023 年)。这项技术的快速增长得益于 FFF 和 MIM 的大量投资。事实上,除了绿色部件的制造方法外,材料 MEX 与 MIM 相似(就整个过程而言)。M-MEX 可以制造出性能接近(或相同)于 MIM 的零件。就设计自由度而言,金属 MEX 更具吸引力,因为它不需要模具。 M-MEX 原料由金属粉末和聚合物粘合剂组成(图 1)。通过将原料挤压到构建平台上来创建 3D 对象(绿色部分)。需要脱脂以去除部分聚合物材料。烧结是最后一个过程,通过以下方式完全致密化部件
本应用说明旨在为飞思卡尔半导体客户提供在包覆成型塑料 (OMP) 封装中焊接回流安装高功率 RF 晶体管和集成电路的指南。本文档将帮助客户开发适合其设计和制造操作的装配工艺。每个功率放大器 (PA) 设计都有其独特的性能要求。同样,每个制造操作也有其自己的工艺能力。因此,每个设计和组装可能都需要进行一些微调。本应用说明旨在为客户提供所需的信息,以建立最适合其设计并与制造操作兼容的工艺。在设计和制造 PA 系统时,必须考虑电气、热、质量和可靠性因素。使用此处提供的指南,客户应该能够开发可制造的装配流程,该流程可以执行以下操作: