Loading...
机构名称:
¥ 1.0

1. 简介和文献综述 金属增材制造 (MAM) 是一种 3D 打印技术,对各个行业(例如航空航天、生物医学、能源)影响最为显著 (Armstrong 等人,2022 年)。根据 ASTM/ISO 52900:2021(ISO ASTM 标准 2021),MAM 分为以下类别:材料挤出 (MEX)、材料喷射 (MJ)、粘合剂喷射 (BJ)、粉末床熔合 (PBF)、定向能量沉积 (DED)、板材层压 (SL) 和瓮聚合 (VPP)。PBF 是最广泛的工艺技术,因为它成熟且精度高 (Mandolini 等人,2022 年),覆盖了 85% 的 MAM 市场 (AMPOWER GmbH & Co 2020 年)。另一方面,PBF 机器复杂且价格昂贵。最近,金属 MEX(M-MEX)因其以下优点而备受关注:成本低(例如台式系统)、设备简单(用户友好性)、潜在危害少(例如没有金属粉末损失)、电源有限(与 PBF 或 DED 相比)和环境可持续性增强(Suwanpreecha 和 Manonukul 2022;Bianchi 等人 2022)。另一方面,M-MEX 的主要缺点涉及线材(例如粘合剂类型的选择)及其生产工艺(例如合适的混合程序)。要求保证线材的高质量,以保证 3D 打印部件的最终形状、尺寸、尺寸和属性(Suwanpreecha 和 Manonukul 2022)。 M-MEX 也称为 mFFF(金属熔丝制造,(Bankapalli 等人,2023 年))、FDMet(金属熔融沉积,(Bankapalli 等人,2023 年))、金属 FDM(Ramazani 和 Kami,2022 年)、MF3(金属熔丝制造,(Singh 等人,2020 年)),其灵感来自 MIM(金属注射成型)和 FFF(熔丝制造)(Bankapalli 等人,2023 年)。这项技术的快速增长得益于 FFF 和 MIM 的大量投资。事实上,除了绿色部件的制造方法外,材料 MEX 与 MIM 相似(就整个过程而言)。M-MEX 可以制造出性能接近(或相同)于 MIM 的零件。就设计自由度而言,金属 MEX 更具吸引力,因为它不需要模具。 M-MEX 原料由金属粉末和聚合物粘合剂组成(图 1)。通过将原料挤压到构建平台上来创建 3D 对象(绿色部分)。需要脱脂以去除部分聚合物材料。烧结是最后一个过程,通过以下方式完全致密化部件

结合金属沉积的分析成本模型

结合金属沉积的分析成本模型PDF文件第1页

结合金属沉积的分析成本模型PDF文件第2页

结合金属沉积的分析成本模型PDF文件第3页

结合金属沉积的分析成本模型PDF文件第4页

结合金属沉积的分析成本模型PDF文件第5页