应用示例和适用设备分类:0 区 0 区主要包括诸如密闭容器、管道和设备内部等区域,这些区域内含有易燃液体。此处相应的工作温度高于闪点。潜在爆炸性气体位于液体表面之上,而不是液体中。易燃液体的大多数气体比空气重,扩散方式与液体类似。诸如坑或泵池之类的空腔通常可以在较长时间内容纳这些爆炸性气体,因此这里也有必要预期 0 区区域。对于 0 区设备,即使发生故障的概率很小,也应保护点火源以免发生爆炸。因此,设备应满足以下要求:应满足一种保护类型
应用示例和适用设备分类:0 区 0 区主要包括诸如密闭容器、管道和设备内部等区域,这些区域内含有易燃液体。此处相应的工作温度高于闪点。潜在爆炸性气体位于液体表面之上,而不是液体中。易燃液体的大多数气体比空气重,扩散方式与液体类似。诸如坑或泵池之类的空腔通常可以在较长时间内容纳这些爆炸性气体,因此这里也有必要预期 0 区区域。对于 0 区设备,即使发生故障的概率很小,也应保护点火源以免发生爆炸。因此,设备应满足以下要求:应满足一种保护类型
MS14 设计用于在空气和喷气燃料的爆炸性混合物存在的情况下操作,不会在海拔高度 -1,800 英尺至 50,000 英尺的大气压下引起爆炸或火灾。MS14 不会产生超过 400 F 的表面温度或热量。当设备打开、关闭或操作时,MS14 不会产生足以点燃爆炸性混合物的能量水平的放电。MS14 符合 MIL-STD-810C、方法 511.1 和程序 II 的要求。符合 MIL-STD-202、方法 112D 或 MIL-STD-883、方法 1014.7(如适用)要求且氦气泄漏率不超过 1 x 10-7cc/s 的密封设备不受此要求限制。
en iec 60079-0:2018爆炸性气氛 - 第0部分:设备 - 一般要求EN 60079-11:2012爆炸性气氛 - 第11部分:设备通过内在安全性保护设备“ I” IEEC 60079-15:2019爆炸性氛围 - 第15部分15:通过类型的保护范围 protection by increased safety "e" EN 61000-6-2:2005+AC:2005 Electromagnetic compatibility (EMC) - Part 6-2: Generic standards - Immunity for industrial environments EN 61000-6-4:2007+A1:2011 Electromagnetic compatibility (EMC) - Part 6-4: Generic standards - Emission standard for industrial environments EN 61326-1:2013 Electrical equipment for measurement, control and laboratory use - EMC requirements - Part 1: General requirements EN 61326-3-1:2008 Electrical equipment for measurement, control and laboratory use - EMC requirements - Part 3- 1: Immunity requirements for safety-related systems and for equipment intended to perform safety-related functions (functional safety) - General industrial applications EN 61010-1:2010+A1:2019+AC:2019 Safety requirements for electrical equipment for measurement, control, and laboratory use - 第1部分:一般要求EEC 63000:2018对于限制有害物质的电气和电子产品评估的技术文档
2.就 1.A.7.b. 而言,相关雷管均采用小型电导体(桥、桥丝或箔),当快速、高电流电脉冲通过时,该导体会爆炸性蒸发。在非拍击器类型中,爆炸导体在接触高爆炸材料(如 PETN(季戊四醇四硝酸酯))时引发化学爆炸。在拍击器雷管中,电导体的爆炸性蒸发驱使飞行器或拍击器穿过间隙,拍击器对爆炸物的撞击引发化学爆炸。某些设计中的拍击器由磁力驱动。术语爆炸箔雷管可能指 EB 或拍击器型雷管。
潜在爆炸性和爆炸性化合物最明显的危害来自可能因飞散的碎片(金属、玻璃、陶瓷等)造成的身体伤害,以及因爆炸伴随或随后发生的火灾造成的烧伤。其中一些化合物还可能导致急性和慢性健康影响。用户必须熟悉他们正在使用的化合物的具体危害和毒性,这些可以在化学品的安全数据表 (SDS) 中找到。SDS 可通过耶鲁大学 EHS 网页 (ehs.yale.edu) 上的安全数据表链接获取。个人防护设备 (PPE) 大学的个人防护设备政策可在 EHS 网站 (ehs.yale.edu) 上找到处理这些化合物时必须佩戴护目镜和面罩。处理 PEC 和爆炸性化合物时必须佩戴手部防护手套。在实验室环境中处理固体或皮肤不太可能与溶液接触时,检查型丁腈手套(厚度至少为 4mil)通常足以处理这些化合物。但是,如果可能与皮肤接触溶液或使用量较大,则应在检查型丁腈手套上戴上实用级手套。在许多情况下,实用级丁腈手套或氯丁橡胶手套是合适的,但请参考化学品的 SDS、手套制造商的选择指南或联系 EHS 进行验证。皮肤和身体防护 长裤或覆盖身体的衣服
摘要:到目前为止,A15 NB 3 Si是在高压(〜110 GPA)下产生的唯一“高”温度超导体,该温度已成功地将其带回了在亚稳态条件下的房间压力条件。基于当前的极大兴趣,他们试图在高压下产生的室压高温超导体,我们重新爆炸地压缩了A15 NB 3 SI及其从Tetragonal NB 3 Si产生的生产。首先,在爆炸性压缩的A15 NB 3 Si材料上进行了高达88 GPA的钻石砧细胞压力测量,以跟踪T C作为压力的函数。t c在88 GPA时被抑制至〜5.2 k。然后,使用A15 NB 3 Si的这些T C(P)数据,在室温下(在5 K时在5 K时升高到120 GPa)在四方NB 3 Si上施加了高达92 GPA的压力。电阻率的测量结果没有任何A15结构产生的迹象。 e。没有A15 NB 3 Si的超导特征的迹象。这与四方NB 3 Si的爆炸性压缩(高达P〜110 GPA)相反,后者在1981年的Los Alamos国家实验室实验中产生了50-70%A15材料,在环境压力下T C = 18 K。这意味着由于爆炸性压缩而引起的伴随的高温(1000 O C)对于成功驱动四方的反应动力学是必不可少的。我们的理论计算表明,A15 NB 3 Si具有焓和四方结构,在100 GPa时为70 MeV/AtoM较小,而在环境压力下,四方相的焓低于A15相位的A15相位为90 MEV/ATOM。事实是,在室温下“退火”了A15爆炸性压缩材料39年没有效果表明,缓慢的动力学可以在很长一段时间内在环境条件下稳定高压亚稳态,即使对于90 MEV/原子的大驱动力也是如此。
准备好新的爆炸性或爆炸性混合物时,有必要检查其爆炸特性,以确保它们与初步计算或参考文献值一致。可以使用爆炸加速传单(传单板测试或DAX)的速度分布的测量来表征新材料。与传统但过时的HESS或KAST测试不同,PDV允许直接测量关键参数,而无需与标准样本立即进行比较。可以使用爆炸加速的薄金属传单的初始速度来推断爆炸反应区的参数。此外,圆盘中的冲击回响引起的速度步骤也可以用于确定爆炸产物的等渗膨胀路径,这是爆炸加载过程数值建模的重要输入。轮廓后部的限制(“海岸”)速度对应于从爆炸产物传递到传单的能量 - 爆炸物的加速能力。可以计算出特征性的Gurney速度。