*ICARE – CNRS,1C avenue de la recherche scientifique,45071 Orléans Cedex,法国。**CNES,18 avenue Edouard Belin,31401 Toulouse,法国。***Snecma,Division Moteurs Spatiaux,Forêt de Vernon,BP 802,27208 Vernon,法国。摘要 回顾了由 Snecma 开发的技术演示器 5 kW 级 PPS ® X000 霍尔效应推力器的性能特征,输入电功率范围为 1.5 kW 至 7 kW。结果表明,PPS ® X000 推力器既可以在高推力域(高达 350 mN)下运行,也可以在高比冲域(高达 3200 s)下运行。 PPS ® X000 电动推力器的双模功能使其非常适合重型地球静止通信卫星的轨道定位和定位等任务。机器人探索太阳系外行星和遥远彗星等太空任务需要超过 1 N 的推力。
抽象的透明度是开发功能性和装饰性薄膜和涂料的关键因素,但是将纳米粒子掺入有机树脂中以改善其性质,使其经常使其不透明。在这项工作中,环氧/分层双氢氧化物(LDH)纳米复合涂料的光物理特性与环氧树脂中LDH的分散剂状态相关。根据含有0.1、0.5、0.7、0.7、1.0和3.0 wt%mg – al -– al -– al -– ldh和Zn – al -al -ldhs的膜的透明度,评估了固体环氧网络的质量。在高载荷下,直接透射率(y直接)减少,而涂料中的光散射相对于整洁的环氧树脂得到了改善。最高的Zn – al -LDH加载(3.0 wt%)略微恶化了透明度(Y Direct = 93.3),但仍高于含有0.5 wt%mg – al -ldh的环氧纳米复合材料(y直接= 89.8)。在含有1.0 wt%Zn – al -dh的环氧纳米复合材料中分配了一个良好的标签,而在MG -AL -LDH含量的CI标记方面,环氧/mg -al -LDH纳米复合材料较差。在添加0.1 wt%Zn – al -LDH后,T g值的增加约为28°C,表明Zn – al -LDH可以使环氧基质和纳米片的相互作用很强。然而,环氧/mg – al -ldh纳米复合材料的T g降低是由于不当分散体而导致的mg – al -– ldH纳米片与环氧基质之间弱相互作用的标志。通常,首次揭示了CI使化学交联与环氧/LDH纳米复合材料的光物理特性相关联。
关键字:CUALS 2,电子结构,光学,各向异性1。引言科学家对辣椒半导体的多功能技术应用表现出了重大兴趣,这些技术的特征是公式A xi b xii c vi2。三元金黄色葡萄糖物在发光二极管(LED),太阳能电池板和具有非线性光学特性的设备中被广泛认可[1-4]。cuals 2被归类为沙尔卡西岩家族的成员。进行了许多研究[5,6],以探索正常大气条件下Cuals 2的电子,电气和光学特性。S.S. S. S. Sugan及其同事通过采用实验技术[7]对环境温度下CAULS 2的光学特征进行了研究。Jaffe等人采用理论技术来探索Cuals 2 [8]的化学性质。Abdellaoui等。 使用理论方法来分析其结构和物理特性[9]。 最近,Geng等人对在各种压力下的四方小子2的性质进行了分析[10]。 缺乏关于CUALS 2的各向异性和动态特性的广泛研究。 在这项研究中,我们通过第一原理计算,从其结构和弹性方面检查了Cuals 2的各向异性。 dft已证明其在研究各种材料的特征和机械行为方面的功效,包括对可比物质的理论检查[11]。Abdellaoui等。使用理论方法来分析其结构和物理特性[9]。最近,Geng等人对在各种压力下的四方小子2的性质进行了分析[10]。缺乏关于CUALS 2的各向异性和动态特性的广泛研究。在这项研究中,我们通过第一原理计算,从其结构和弹性方面检查了Cuals 2的各向异性。dft已证明其在研究各种材料的特征和机械行为方面的功效,包括对可比物质的理论检查[11]。
声明和免责声明 D-Wave Quantum Inc. (D-Wave)、其子公司和附属公司尽商业上合理的努力确保本文档中的信息准确且最新,但可能会出现错误。D-WAVE QUANTUM INC.、其子公司和附属公司或其各自的董事、员工、代理或其他代表均不对因使用本文档或其中包含或提及的任何信息而引起的或与之相关的损害、索赔、费用或其他成本(包括但不限于法律费用)承担责任。这是全面的责任限制,适用于任何类型的损害,包括(但不限于)补偿性、直接、间接、惩戒性、惩罚性和后果性损害、程序或数据的损失、收入或利润的损失、财产的损失或损坏以及第三方索赔。
声明和免责声明 D-Wave Quantum Inc. (D-Wave)、其子公司和附属公司尽商业上合理的努力确保本文档中的信息准确且最新,但可能会出现错误。D-WAVE QUANTUM INC.、其子公司和附属公司或其各自的董事、员工、代理或其他代表均不对因使用本文档或其中包含或提及的任何信息而引起的或与之相关的损害、索赔、费用或其他成本(包括但不限于法律费用)承担责任。这是全面的责任限制,适用于任何类型的损害,包括(但不限于)补偿性、直接、间接、惩戒性、惩罚性和后果性损害、程序或数据的损失、收入或利润的损失、财产的损失或损坏以及第三方索赔。
机会 - 地质和地球物理特性在全球范围内的地质机器学习,我们对地球特性的集体理解受到直接观察地质的观察(例如,井原木,核心等)或间接通过遥感(例如地球物理或卫星观测)。这一事实导致在高空间分辨率(至sub-km量表)处的地球特性的稀疏数据集,或者从卫星观测值中产生了一个连续但低分辨率的数据集。因此,需要自动插值(例如Kriging)和/或人类知情轮廓,以在高分辨率下持续了解这些属性。在这项工作中,我们致力于改进这些方法。利用机器学习,深度学习和/或物理知情神经网络(PINN)的新发展,我们可以在空间和深度上智能插入或预测地球参数。这项工作利用了地质观察的各种数据源(即“大数据”),例如:科学钻孔,挖出和疏ed和地球物理观察,例如由乘员船(例如,船舶),自主平台(例如,AUV)(例如,AUV)和Satellites和Satellites和Satellites和Satellites和Satellites。我们将这些数据集与基于物理学的地质过程模型(例如压实)和数据驱动方法(例如机器学习)结合使用,以产生对地球特性的连续且准确的估计。这些方法的示例包括从稀疏的船板观测值中预测连续的重力场,或使用核心数据预测沉积物岩性与深度。鼓励基本的地质理解,但不需要。我们寻求具有地质/地球物理学经验的合格申请人,遥感/地理位置,机器学习/数据科学和/或运输/摇滚物理建模。申请人将有一些计算经验,并且在基本的编程/脚本中保持舒适(不需要特定语言)。实验室地点:海洋科学部海军研究实验室Stennis Space Center,MS POC:Benjamin Phrampus海军研究实验室,代码7352建筑物1005 Stennis Space Center,MS 39529电话:228-688-4899电子邮件:Benjamin.phrampus.civ@us.civ@us.navy.mil
本文档是公认的手稿版本的已发表作品,该作品以《物理化学杂志》 C,版权©2023 American Chemical Society出现在同行评审和发行者的技术编辑后。要访问最终编辑和发布的工作,请参见https:// doi.org/10.1021/acs.jpcc.3c00690。
使用基于密度函数理论的紧密结合方法,我们研究了羰基对孔物石墨烯薄膜的电物质特性的影响,其直径为1.2 nm,颈部宽度为0。7-2 nm。根据Mulliken的部分电荷分布图的分析,在孔边缘的原子上进行了降落。已经建立了从羰基到孔的石墨烯的电荷转移现象。在研究中的特定膜的特定电导率变化的规律性,在“ Zigzag”方向和扶手椅上的颈部宽度增加了“六边形石墨烯格子的方向”。表明,电导率在“ Zigzag”方向突然变化,并显示了扶手椅方向的接近线性增加。在选择量子电子传输方向时,发现了孔石墨烯膜中电导率各向异性的存在。
用晶体学方向(001)和晶格参数a = b = 0.3265 nm和c = 0.5212 nm表征了产生的ZnO 膜。Zno 1 - 薄膜表面上的纳米晶状体的特征大小范围从50 nm到200 nm。ZnO 1的晶格参数 - ssх纳米晶体的实验确定为Zno = 0.7598 nm。这项研究阐明了ZnO膜的晶格参数以及ZnO 1的几何尺寸,在胶片表面上在胶片表面上的纳米晶状体的几何尺寸。已经确定ZnO 1的晶体结构 - sх纳米晶体代表一个立方晶格,属于空间群f43m。已经确定,在γ-辐照5·10 6 rad之后,Zno 膜的电阻率降低至ρ=12,7Ω·CM,多数荷载流子(µ)的迁移率为0.18 cm 2 /v·S,而浓度增加了(N)的浓度(N)和相等的2.64•10 18 cM -10 18 cM -10 18 cM -10 18 cM -10 18 cM。对γ/n-Si异质结构的当前电压特性的研究在γ摄取之前和之后的剂量为5·10 6 rad的研究表明,电压对电压的依赖性遵守了指数定律,这与discection灭deptection deptetion deptetion deptetion deptetion deptetion deptetion depettion depettion depettion deptetion。确定,在γ-辐照的影响下,剂量为5·10 6 rad,p-zno >/n-Si异质结构在负电压下增加,并且由于单位网络级别的稳定性而在稳定性上观察到固定曲线和峰值的曲线,并且峰值在快速层面上的稳定性上是在稳定性上的。关键字:电影;超声喷雾热解;纳米晶体; γ辐射;晶体学取向;晶格参数;携带者;注射耗尽PAC:78.30.am
跨电磁频谱上的快速响应光传感是量子系统,3D机器视觉和增强现实的推动力,但是现有技术尚未针对红外传感进行优化。诸如速度,效率,噪声,光谱检测范围和成本等特征之间的权衡激励研究界开发纳米结构的感应材料,这些传感材料可提供从可见的到无缝集成的红外波长。努力促进设备的组合增益和带宽,因此对电荷载体动力学基础的物理机制有了清晰的理解,并特别关注速度限制过程,这是很高的优先级。在这篇综述中,我们提供了活性材料的光物理属性及其对光学传感器性能的影响,重点是时间和峰值响应之间的相互作用,以抗不同持续时间的脉冲光。我们确定了限制性能的过程和方向,以实现高速光检测的开发材料和设备体系结构的未来进展。