量子相干性是量子力学中的一个基本概念,代表了将量子力学与经典物理学区分开的最基本特征之一。量子相干性是多粒子干扰和量子纠缠的基础。它也是量子光学,量子信息等各种物理现象的重要成分。近年来,通过基于资源理论框架的量子相干测量方案的提议,已广泛研究了量子相干性作为量子资源。本文回顾了量子相干性的资源理论,并介绍了量子相干性在量子计算,量子信息和跨学科领域的重要应用,尤其是在量子热力学和量子生物学中。量子相干性及其应用仍在探索和开发。我们希望这篇评论可以为相关研究提供灵感。
本系的目标是从识别和控制系统科学的角度理解物理现象,充分利用信息学和物理学,创建新的原理、方法、机制和系统,并在广泛的技术领域开展有用的研究和提供教育。关键词信息物理学、信息物理系统、计算、控制理论、信号处理、系统架构、物理和生物控制论、非侵入性神经成像、脑机接口、智能传感器、仪器和传感系统、集成智能系统、图像和语音识别与合成、音乐声学处理、自适应识别和控制系统、虚拟现实、远程机器人、软机器人、元宇宙、逆问题、光子计算、计算成像、网络安全、系统软件、移动通信系统。
摘要:大脑通过突触连接的神经元电路和网络的功能。这种类型的连接可能是由于物理力而存在的,这些力量相互作用以稳定大脑中的局部接触。粘附是一种基本的物理现象,允许不同的层,相和组织连接。同样,突触连接通过专门的粘附蛋白稳定。本综述讨论了粘附的基本物理和化学特性。细胞粘附分子(CAM)将讨论细胞粘附分子(IGSF)的钙粘蛋白,整合素,选择蛋白和免疫球蛋白家族(IGSF),并将在生理和病理学脑功能中的作用。最后,将描述凸轮在突触中的作用。此外,还将提出研究大脑粘附的方法。
日程安排:讲座:星期一和星期一12:00-13:00在L4中;教程:星期三12:00-13:00:T109-T112;第L1节: - L2节: - 第L3节: - 第L4节: - 办公时间:课程网站:http://home.iitk.ac.in/~akjha/poso201a.htm课程内容:这是量子物理学的第一门课程,从了解一些基本物理现象开始,无法通过经典的机制来解释一些基本的物理现象。在讨论了量子物理学的制定后,我们将讨论其在现代科学和工程上的某些应用。假定了一些经典力学和波浪的知识。在数学工具中,我们将使用微积分,微分方程和复杂变量。这是本课程中将涵盖的主题的初步列表。我们可能会添加/删除一些主题到列表中/从列表中:基本线性代数。量子力学,黑体辐射,光电效应,康普顿效应,de-broglie假设及其实验验证的基础。与时间无关和时间依赖性的schrodinger方程,出生的解释,期望值,自由粒子波形和波袋,不确定性原理。在盒子中固定的schrodinger方程的溶液,有限孔中的粒子,跨步势的反射和传输,应用于诸如Alpha-decay,一维谐波振荡器之类的现象。解决氢原子基础状态的固定状态schrodinger方程的解,激发态的讨论,通过引入电子自旋和保利的排除原理对周期表的解释,Stern Gerlach实验,两级系统。游离粒子波 - 函数和金属,kronig-penny模型以及一个维度的频带的形成。光与物质的相互作用,爱因斯坦的现象学理论,状态的寿命,激光器。单个光子干扰和连贯性的简介。量子信息和量子纠缠简介。参考书:(这是一些参考书。在整个课程的整个过程中,都不能遵循特定的书作为文本。,但我们可以将这些书之一用作一组给定主题的文本。)
维护、发展和改进时间单位、频率单位和基于这些标准的时间尺度的国家标准;在对进一步根本性改进频率标准及其应用具有重要意义的领域开展研究,重点是微波和激光设备、原子和分子共振以及基本物理现象和常数的测量;使时间和频率标准装置和概念适应特殊的科学和技术需求;开发射频、微波、红外和可见光辐射领域的时间和频率测量方法;协调国家标准时间尺度与国际时间尺度和美国海军天文台维护的时间尺度;与国家和国际组织合作,开发测量时间相关量的方法;运营时间和频率传播服务,如广播电台和广播,以实现对国家时间和频率标准的可追溯性。
许多现实世界现象的数学描述都是用微分方程来表述的。它们是描述基于函数导数的函数的方程,用于模拟计算流体动力学、量子力学和电磁学等领域的各种物理现象,也用于金融、化学、生物和许多其他领域 [8]。例子包括物理学中的热方程、波动方程和薛定谔方程、金融中的布莱克-舒尔斯方程以及化学中的反应扩散方程。由于它们是一种广泛使用的工具,因此研究如何使用量子算法来求解微分方程以及它们是否能比传统方法提供更快的速度是很有意义的。我们将首先简要了解线性微分方程,特别是泊松方程,以及它们离散化为线性方程组,然后介绍量子线性系统求解器 (QLSS) 并将其与经典方法进行比较。
开发、运行和探索科学、应用和技术。这些计划的主要目标是:(1)保持美国在关键太空活动中的领先地位,以便继续开发和探索太空;(2)开展研究和实验,以扩大对以下方面的了解:(a)通过长期的天体物理观测,了解天体物理现象和宇宙的起源和演化;(b)地球及其环境,以及它与太阳的动态关系;(c)通过太阳、行星和月球科学与探索,了解太阳系的起源和演化;(d)太空环境和技术,以推进生物科学知识;(3)继续探索与永久太空设施相关的要求、操作概念和技术;(4)对先进技术和系统进行适当的研究和实验,为未来的民用应用奠定基础。
通常,人们会这样写 QFT = QM + SR。物理学家们说这番话时,已经积累了近一个世纪的经验,他们为此感到困惑和痛苦,因为他们建立的描述物理现象的理论存在局限性。在学习这门学科时,人们看到的是一个往往毫无动机的精致产品,一个可以工作的大黑匣子。因此,当人们在搅动 QFT 这个重型机器以产生一些合理的结果时,很难理解我们为什么需要它。例如,我们为什么需要场?但 QFT 并不是为了抽象而抽象,如果有一个更简单的理论来描述粒子物理学,我们早就找到了它。鉴于此,今天我想首先明确说明为什么量子力学本身无法描述非常小尺度的物理学。
原子和分子参与的气相碰撞会引起许多重要的物理现象,如反应和能量传递。1 能量传递的截面和速率系数广泛应用于燃烧、2 星际介质 3 和大气等建模领域。4 由于离散内部能级、隧穿和碰撞共振等量子效应,准确描述碰撞动力学需要量子力学处理。这些量子效应在冷碰撞和超冷碰撞中尤为重要,有时甚至占主导地位,近年来,由于技术进步,冷碰撞和超冷碰撞引起了广泛关注。5–11 非反应 12,13 和反应碰撞的量子散射理论都取得了重大进展。14–21 然而,我们在描述散射动力学方面仍然存在重大差距。其中一个例子是对非反应
量子信息为量子场论框架提供了一个强大的新视角,该框架与能量尺度、场内容、对偶框架等无关,因此以与传统量(如关联函数和散射振幅)根本不同的方式贯穿物理现象的空间。纠缠和复杂性等概念为量子场论的许多方面提供了宝贵的新见解,包括关联、对称性、RG 流、相、传输和热化。此外,尽管人们常说我们的时空和引力理论与量子理论存在矛盾,但最近的发展表明时空和引力实际上来自复杂的量子信息模式。这种新的量子信息视角还带来了经典模拟的新方法、量子模拟的新可能性以及与多体物理学及其他领域的许多联系。相反,量子