目的:旨在确定堆肥茶对不使用矿物肥料而产生的甜玉米质量参数的影响。研究方法:这项研究是在尼日利亚塔拉巴州立大学教学和研究农场进行的。这项研究中的肥料处理为500千克HA -1 NPK肥料(对照),每10升水堆肥茶,每20升水堆肥茶和1千克堆肥每30升水堆肥茶,在随机完整的块设计中排列,重复的thrice,每30升水堆肥茶。的发现:结果表明治疗对评估的甜玉米的物理,化学和感觉特征有显着影响(P≤0.05)。矿物质(NPK)肥料治疗给出了平均平均总溶糖含量(33.13 mg g -1),其次是每10升水堆肥茶(33.10 mg g -1),然后每20升每20升堆肥1 kg堆肥,然后是水堆肥茶(31.72 mg g -1)和30千克的糖含量(2 colpy composte)。 )。然而,每10升水堆肥茶和矿物质(NPK)肥料处理的影响相同(p> 0.05)。研究局限性:报告没有限制。独创性/价值:本研究说明了每10升水堆肥茶浓度使用1千克堆肥的可能性,以产生良好的产量和质量,而没有矿物质肥料。
抗昆虫的玉米植物是基因设计的(经过遗传修饰),以表达苏云计芽孢杆菌(BT)的毒素,该毒素已知会损害特定类型的昆虫(昆虫)的胆量,但据推测其他昆虫。BT(CRY)蛋白与某些害虫中肠细胞膜上的特定受体结合,从而导致其破裂。其他昆虫,动物和人类没有那些受体,并且假定BT蛋白在肠道中降解并且对它们不利。例如,加拿大卫生部在其最新的BT玉米批准摘要中(在2021年,对于来自拜耳的Mon95379),“在哺乳动物物种中,没有已知的哭泣蛋白质受体位点,而哺乳动物肠的酸性环境则是哺乳动物肠的含量更高,因此可以从哭泣的蛋白质中脱离这种毒素的作用。 1然而,研究继续破坏这一主张(见下文)。
摘要。本研究旨在评估印度尼西亚中部爪哇可持续玉米供应链涉及的风险,并将其最小化。为了确定可持续性方面的风险事件和代理商,使用了风险之屋(HOR)方法,首先要绘制混合玉米供应链参与者的活动。从相关研究中确定了混合玉米供应链中可能的风险,并由行业和学术专家验证。22个风险事件和15个风险代理。在社会方面,有五次风险事件和三个风险代理;在经济方面,有七个风险代理和14个风险事件。在环境方面,有三个风险事件和五个风险代理。在Hor I期,劳动过失(A5)的总风险优先级(ARP)值最低,而高生产成本(A14)是ARP值最高的风险代理。15个缓解溶液。从推荐的解决方案中选择了基于难度(ETD)得分以防止风险的解决方案的九个缓解技术步骤。最高优先级的降低风险技术是找到另一个原材料供应商(PA6)。
美国环保署此前在 2010 年 3 月 26 日发布的最终规则 (75 FR 14670)(“2010 年 3 月 RFS 规则”)中对玉米酒糟油进行了评估,并在 2020 年 2 月 6 日发布的最终规则 (85 FR 7058)(“2020 年 2 月 RFS 规则”)中更详细地模拟了使用玉米酒糟油作为生物燃料原料所产生的排放。根据 InSitu 提交的数据和 2020 年 2 月 RFS 规则中制定的玉米酒糟油评估方法,美国环保署进行了生命周期评估,估计通过 InSitu Rochelle 途径生产的可再生柴油和取暖油与法定柴油基准相比,可将生命周期温室气体 (GHG) 排放量减少 75%。根据我们的生命周期温室气体评估结果,通过 InSitu Rochelle 途径生产的可再生柴油和取暖油符合生物质基柴油 (D 代码 4) RIN 的条件,前提是满足所有适用的法定和监管条件。此外,本判定文件第 IV 节规定了 InSitu Rochelle 途径特有的其他条件,必须满足这些条件,InSitu 才能通过这些途径生成 D 代码 4 RIN。
摘要:干旱是对全球玉米产量的严重负面影响的主要非生物压力之一。了解玉米中干旱耐受性的遗传结构是朝着繁殖耐旱的品种和针对性的遗传资源剥削的关键步骤。在这项研究中,与谷物产量成分,开花时间和植物形态有关的511定量性状基因座(QTL)在干旱条件下以及干旱耐受性指数是从27项发表的研究中收集的,然后预测在IBM2 2008年的IBM2 2008年邻居参考图中的荟萃分析。总共确定了与玉米干旱耐受性相关的83个元QTL(MQTL),其中20个确定为核心MQTL。与先前发布的QTL相比,MQTL的平均置信区间大大降低。通过来自基因组关联研究的共定位标记 - 特性关联证实了几乎一半的MQTL。基于与干旱耐受性有关的水稻蛋白的比对,在玉米MQTL附近发现了63个直系同源基因。此外,在20个核心MQTL区域和玉米与同源基因中发现了583个候选基因。基于候选基因的KEGG分析,发现植物激素信号通路显着富集。信号通路可以对干旱耐受性产生直接或间接影响,并与其他途径相互作用。总而言之,这项研究提供了对玉米干旱耐受性的遗传和分子机制的新见解,以对繁殖中这种重要特征的更具针对性的改善。
摘要:基因修改(GM)农作物已经在市场上已经近27年了,并且自一开始就受到了知识产权(IP)权利的保护,该权利限制了第三方的使用和商业化。在广告中,它们的发展通常与成本提高有关,这使得公共研究机构的生产极为困难,尤其是在发展中国家。然而,第一代转基因农作物的许多专利已经到期,其他人会尽快这样做,为通用的转基因作物开辟了道路。使用公共领域中的技术可以以可承受的价格交付适合当地环境的GM种子。本文介绍了第一个拉丁美洲非选手GM玉米的发展,并讨论了允许其在哥伦比亚商业发布的相关IP和监管问题。此处暴露的方法可用于其他农作物或农艺利益的特征。
摘要:发展中国家数百万人的饮食中普遍存在微量营养素缺乏症,需要采取有效的缓解措施。通过育种开发生物强化品种有望成为解决微量营养素缺乏症的可持续且经济实惠的解决方案。过去十年的育种工作已经产生了数十种生物强化开放授粉品种和杂交品种,适应不同的农业生态区。基因组学和分子工具的进步使得快速鉴定富含必需微量营养素(如维生素 A 原 (PVA)、铁 (Fe) 和锌 (Zn))的玉米品种成为可能。利用多组学驱动的发现来发现大量营养性状背后的遗传因素对于将产品概况中的优质性状育种纳入主流至关重要。分子育种方案以及在育种流程的每个阶段整合新兴的组学工具对于提高遗传增益至关重要。近期阐明微量营养素代谢的势头应扩展到新的育种目标以及同时提高营养品质并减少主食作物中的抗营养因素。利用新技术建立涉及营养基因组学、基因组编辑和农艺生物强化的综合育种方法对于解决营养不安全问题至关重要。本综述强调了整合现代工具加速营养丰富玉米遗传改良的前景。
随着时间的推移,农业账单中跨头衔的支出分配不是零和游戏。在每个农场法案中实施的立法变更仅占农场账单之间观察到的变化的一小部分。每年,CBO都会重新估算基线以确定预期成本。基线预测可能会根据经济状况的变化而随着时间的流逝而下降,而无需国会采取行动。例如,随着时间的流逝,农业账单支出的相对比例发生了变化。在2024年的预测中,营养头衔占农场账单基线的82%,而2018年农业账单则约为76%,在2008年农场法案中颁布了67%。营养标题的急剧增加反映了经济状况的变化,包括大流行后发生的经济状况以及为了抢断利益计算的行政调整。对于非营养农业账单计划,2024年的基线金额比2018年农场账单颁布时大(截至2024年,在10年内为2530亿美元,而2018年的10亿美元在10年中为2100亿美元)。
加拿大认为,安全使用GM作物和GM玉米的历史悠久。加拿大指出:“自1990年代中期以来,全球已在全球种植了通用农作物品种,用于食品和牲畜饲料”。(第6段),即使到现在,转基因作物品种(主要是玉米,低芥酸菜籽和大豆)也在几个国家中生长。美国政府在其提交中使用的信息来源表明,十个国家 /地区占全球总经理总面积的98%。7实际上,全球总经理中有91%在五个国家中种植:美国,巴西,阿根廷,加拿大和印度以及美国仅占全球总经理的近40%(37.5%)。在29个国家种植转基因农作物中,许多人只专用于农业土地上的一小部分来种植通用农作物:在全球范围内,转基因农作物在农业土地的不到4%上种植。8
医学人工智能(AI)服务,包括健康聊天机器人,预计对于促进医疗保健的质量,解决医疗保健资源的不平等分配,降低医疗保健成本以及提高诊断水平和效率至关重要(Guo and Li,2018; Lake et et al。,2019; Schwalbe and Wahl,2020; Lake and Li。但是,越来越多的参与者更喜欢与医生进行咨询,而不是健康聊天机器人进行医学咨询(Branley-Bell等,2023),即使他们的专业知识水平与人类医生相同的专业知识(Yokoi等,2021);在与健康聊天机器人(Fan等,2021年)进行磋商期间,有大量用户退出,其中近40%的人甚至不愿与他们互动(PWC,2017年)。值得注意的是,许多专家担心与医学AI的潜在歧视性偏见,解释性和安全危害有关的固有局限性(Amann等,2020)。例如,一项调查发现,超过80%的专业医生认为健康聊天机器人无法理解人类的情绪,并通过为患者提供不准确的诊断建议来代表误导治疗的危险(Palanica等,2019)。此外,人们认为健康聊天机器人是不真实的(Ly等,2017),不准确(Fan等,2021),可能是高度不确定和不安全的(Nadarzynski等人,2023年),导致他们在需要医疗救助的情况下使他们的脱口机或犹豫。因此,这项研究的第一个研究问题是探索哪些因素影响人们抵抗健康聊天机器人。尽管克服对AI医疗保健技术的公众抵抗对于促进其未来在医疗领域的社会接受至关重要(Gaczek等,2023),但很少有研究研究如何形成对AI医疗保健技术(例如健康聊天机器人)的抵抗行为。