摘要 干旱是一种对植物生长和生产产生不利影响的环境因素。由于气候不可预测,农业生长阶段干旱相关问题的频率正成为提高产量的主要障碍。需要新的方法来提高生产力和干旱适应性。需要表达特定的与压力相关的基因,以便通过基因工程提高抗旱性,这是非常可取的。在具有转基因 DNA 的植物中,已经确定了传递抗旱性并增强植物生存和发育的基因。在本概述中,我们专注于创造能够抵御干旱的转基因植物。利用与环境压力或其他转录因子相关的基因,以及其他与压力相关的基因,大多数栽培植物已经变得抗旱并能抵抗其他非生物胁迫。它会导致精确的肥料改变 DNA,而对植物的生长发育几乎没有影响。关键词:转基因、基因工程和干旱
在荷兰和欧盟更广泛地,有一个野心从线性经济转向更循环的系统。这反映在2016年启动的荷兰政府范围内的循环经济计划中(荷兰政府2016年)。在欧盟一级,在2020年通过了一项新的循环经济行动计划,成功采取了2015年行动计划(欧盟委员会2020年)。这种过渡旨在限制环境压力,应对重要资源的潜在供应安全风险,并创造可持续的增长和就业。虽然荷兰和欧盟的循环经济过渡的几个方面会影响荷兰/欧洲企业,消费者和公民,但荷兰或欧洲循环经济过渡对欧洲以外国家有潜在的影响。低收入和中等收入国家(LMIC)通过全球供应链和国际贸易与荷兰和其他欧盟成员国有关。向更圆形
摘要 番茄是世界上第一种食用蔬菜。番茄的生长条件和地区各不相同,主要在田间用于加工番茄,而新鲜市场番茄通常在温室中生产。番茄面临着许多环境压力,既有生物的,也有非生物的。如今,许多新的基因组资源可用,从而加速了遗传进程。在本章中,我们将首先介绍培育气候智能型番茄的主要挑战。我们将介绍与生产力、果实质量和对环境压力的适应性相关的育种目标,特别关注气候变化如何影响这些目标。在第二部分中,我们将介绍可用的遗传和基因组资源。然后,我们将讨论传统和分子育种技术。然后,我们将特别关注生态生理建模,这可能是定义适应育种目标的新理想型的重要策略。最后,我们将说明如何实施新的生物技术工具并将其用于培育气候智能型番茄。
本研究中使用的石墨烯是一种基于三维碳(3D-C)的纳米结构泡沫状 TIM,具有相对较高的固有热导率(~80 W/mK)。[6] 中介绍了该材料的制备工艺和物理特性,以镍泡沫为模板来生长 GF,在环境压力下通过在 1,000 °C 下分解 CH4 将碳引入其中,然后在镍泡沫表面沉淀石墨烯薄膜。由于热膨胀系数的差异,石墨烯薄膜上形成了波纹和皱纹。在用热 HCl 溶液蚀刻掉镍结构之前,在石墨烯薄膜表面沉积一层薄薄的聚甲基丙烯酸甲酯 (PMMA),作为支撑,以防止石墨烯网络在此过程中坍塌。随后用热丙酮小心地去除PMMA层,即可得到连续、相互连接的石墨烯三维网络整体。
由于农作物的生产力直接取决于环境条件。近年来,高通量轨迹方法的发展和进步为全身解剖分子途径铺平了一种方法,这些方法是根据各种不良环境压力/条件而激活的。在不同的OMIC方法中,蛋白质组学在理解农作物的生物学方面发挥了重要作用。由于蛋白质是生物系统中的功能参与者,因此蛋白质的全系统鉴定提供了更好地描绘出对任何外部刺激的响应的潜在变化。高吞吐量蛋白质组对农作物作物的分析已导致鉴定出参与植物防御和生长和调节的几种蛋白质候选物,其中提供了可用于农作物的可能使用的工具,以识别潜在的候选者,这些工具可以鉴定出可用于开发潜在压力较高的繁殖量提高的繁殖量的潜在候选者。
摘要:本文介绍了如何使用故障物理 (PoF) 方法在早期设计阶段快速准确地预测印刷电路板 (PCB) 级电力电子设备的寿命。结果表明,精确建模硅金属层、半导体封装、印刷电路板 (PCB) 和组件的能力可以预测由于热、机械和制造条件导致的焊料疲劳故障。该技术可以预测 PCB 的生命周期,同时考虑到它在运行期间会遇到的环境压力。它主要涉及将电子计算机辅助设计 (eCAD) 电路布局转换为具有精确几何形状的计算流体动力学 (CFD) 和有限元分析 (FEA) 模型。由此,应用热循环、机械冲击、固有频率以及谐波和随机振动等应力源来了解 PCB 退化以及半导体和电容器磨损,并相应地提供高保真功率 PCB 建模的方法,随后可用于促进飞机系统和子系统的虚拟测试和数字孪生。
摘要:转座遗传元件 (TE) 是动态 DNA 序列,可显著影响植物基因表达,使其能够适应环境压力。本综述探讨了 TE 在植物适应中的作用,重点关注 TE 激活和抑制机制,包括染色质重塑、DNA 修饰和小干扰 RNA (siRNA)。应激条件通过应激诱导的转录因子和 TE 启动子之间的相互作用触发 TE 激活,如逆转录转座子家族 COPIA93 和 ONSEN 在调节应激反应基因中所见。了解这些机制为农业提供了宝贵的见解,特别是在开发能够抵御气候变化的作物方面。利用 TE 介导的基因调控为增强植物适应性提供了创新策略,突出了 TE 在植物改良基因操作中的潜力。
我们通过密度函数理论计算研究了原型Mott绝缘子NIS 2的电子结构,在这些计算中,我们明确地说明了非共线性抗铁磁序,如最近在IsoelectRonic Analog Ni(S,SE,SE)2中建立的。对于金属NIS 2在高压下,我们的计算预测了Fermi表面拓扑和体积,这与最近的量子振荡研究非常吻合。但是,我们发现,即使在环境压力下,密度功能理论也错误地预测了金属基态,类似于以前的非磁性或共线性抗抗铁磁模型。通过包括Hubbard相互作用U和现场交换J,金属相被抑制,但即使是这样的扩展模型也无法描述金属到构造的相位转变的性质,并错误地描述了绝缘阶段本身。这些结果突出了更复杂的计算方法的重要性,甚至在绝缘阶段深处,远离莫特绝缘相变。
通过改变细胞的表型或遗传性状的细胞对外源DNA的摄取称为转化。使细胞摄取外源性DNA,必须首先使其渗透性,以便DNA可以进入细胞。此状态称为能力。在自然界中,由于环境压力,一些细菌变得有能力。我们可以故意通过用钙,rubium或镁和冷处理的金属阳离子的氯化物处理来使细胞具有胜任。这些变化会影响细胞壁和膜的结构和渗透性,以便DNA可以通过。但是,这使细胞非常脆弱,必须在这种状态下仔细处理。每1 µg DNA转化的细胞量称为转化效率。太少的DNA会导致较低的转化效率,但过多的DNA也会抑制转化过程。转化效率通常范围范围为1 x 10 4至1 x 10 7的细胞每µg添加的DNA。
相对于体重的大脑被认为是一种明显的人类特征。它经常与将人类与其他物种区分开的社会,行为,技术和其他认知适应性相关。因此,大脑大小进化的过程是严格的科学辩论的主题。已经提出了许多假设,以解释气候和环境如何推动大脑大小的选择,但是通常会假定气候 - 环境选择性压力的单调影响,并且很少考虑在特种之间和内部效应。在这里,我们将贝叶斯系统发育比较技术应用于人类化石记录,以测试气候和环境压力(C-E)对脑大小进化的影响,同时考虑体重和年代年龄。我们发现,较冷,更可变的温度对脑大小的演化具有正面影响,这可能与生物学适应性有关以减轻低温。然而,在同性恋中,随着时间的流逝,这种作用的强度会降低,这表明在后来的物种(Homo Sapiens和Homo neanderthalensis)中,脑大小受到C-E条件的影响较小。引言相对大脑的大小是一个特别重要的特征,因为它通常被用作认知能力1-4的代理。据广泛报道,在过去的几百万年中,人类素的相对大脑大小增加了,最终是我们自己物种的标志性大脑5。然而,随着时间的时间,各个物种内部的逐渐变化引起了整个人类进化的相对大脑大小的增加。因此,我们必须采取与以前的许多研究相比,它只寻求跨物种的模式,才能真正理解人类素的生态驱动因素4,7,8。气候和环境(C-E)长期以来一直认为对人类欺凌的作用至关重要3,4,9-14。因此,已经提出了多种假设来解释C-E变量(例如降水,温度,植被)对人类脑大小进化3的作用。然而,这些假设传统上是用模棱两可的,尚不清楚如何测试它们以及使用哪些数据。最近,Will等人。3明确概述的假设以及对如何从所谓的生物气候变量的套件中预测颅底容量的相关期望,总结了温度和降水量以及描述植被的变量(此后,净初级生产力,NPP)。简要地:环境压力假设表明,资源不足的环境可能引起与压力相关的大脑大小增加3,15,而相反的环境约束假设表明,资源丰富的环境更有可能支持昂贵的大脑3。环境压力和环境约束假设特定预测温度,降水和NPP对脑大小的相反影响。环境一致性和环境变异性假设使降雨,温度和NPP的变化相反。s1),防止得出明确的结论。环境变异性假说预测,需要在短时尺度上提高认知能力(或更长的时间尺度的适应性灵活性)才能耐受波动的环境12 12,而环境一致性假设假设假设认为气候和环境稳定性更适合维持大型和代谢成本的大脑3,8,8,8。所有四个假设清楚地概述了低/波动资源的重要性或对不同时间尺度上的高/稳定资源的重要性,并根据C-E数据做出明确的预测。虽然不同的研究发现了对人类辐射的不同假设的支持3,4,8,15,但所有假设的期望的基础数据并非彼此独立(例如,16;图。尽管生物气候变量和NPP通常用于对灭绝物种的过去环境和生态学的研究,但由于共线性的高水平17,不可能将某些方面的影响分开。例如,最近的工作表明温度,NPP和降水都具有相似的