• 在测量方面,开发之初讨论的测量方法(如称重传感器)与环境测试(热、振动和冲击)的限制不兼容。新的解决方案(如带有应变计的拉杆仪表)已经实施,并将在资格认证活动期间使用。这种仪表化的拉杆将以 FM 的形式出售。• 经过大量研究,机械和热裕度确保在任何情况下,Trigger 都能正常触发。• 全聚酰亚胺加热器能够在高温和高密度功率下短时间运行,而不会出现明显性能下降。当应用需要非常短时间使用时,它允许全聚酰亚胺加热器以高于 ECSS 标准中指示的功率密度使用。
使用这两种轴承技术的早期Stirling设计成功地证明了实验室的性能和寿命,并有可能使DRP生成器持续至少17年,这通常是长期过境时间到外行星及其月亮所需的时间。虽然尚未在太空中飞行过Stirl转换器,但Stirling Cryocoolers与类似的支撑技术配对,在许多太空任务(包括16年的Rhessi Solar Flare天文台)上非常成功地使用了。AMSC和SunPower已为NASA Glenn提供了原型转换器,其中一些已完成了超过4,000个小时的操作和测试。单位将进行环境测试,以证明对太空任务期间预期的恶劣条件的鲁棒性。
美国国防部 (DOD) 推迟了关键测试的完成,直到 F-35 飞机模拟器的问题得到解决,GAO 去年也报告了这一点,并将再次推迟其全速生产决定。2020 年 8 月,项目办公室确定飞机模拟器(用于复制无法在真实环境测试中完成的复杂测试场景)不能完全代表 F-35 的能力,在修复之前不能用于进一步测试。从那时起,项目官员一直在制定一项新计划,以确保模拟器按预期工作。在他们最终确定计划并修复模拟器之前,下一个生产里程碑日期(将正式授权国防部从开发过渡到全面生产)仍未确定(见图)。
支持包括:qts 定义和分析;CONOPS 开发;原型设计;T&E;技术协助;系统分析/工程/集成/维持;软件开发、集成和维护;硬件开发、安装和维护;测试数据采集、缩减和分析;技术后勤支持;网络安全/IA;CM;培训;建模和仿真;PM/PjM。一般元素包括从原型设计到遗留系统维持的生命周期阶段的工程和技术服务;室外天线范围和环境测试实验室的操作;性能高级规划功能;SharePoint 开发和维护;信息管理;Class-Unclass HW/SW 系统的操作/评估/维护/座位管理;指定程序的 SW 开发/文档;IT 和通信硬件和布线以及电子安全系统的安装/维护;各种 PM 服务。
顾名思义,混合部署方法从新实施和系统转换中获取元素以执行选择性数据过渡。现有过程配置在S/4HANA中复制,但是该配置最初与数据分开。现有流程充当模板,根据需要进行审查和修改,以更好地满足未来业务需求。一旦完成了新的S/4HANA环境的配置,相关数据就会转换并从传统ERP迁移,并将新环境测试并部署到生产中。混合部署所涉及的工作量取决于更改的数量,但理想情况下,它可以通过最大的现有配置重用以及对现有数据的最小转换要求进行优化的过程。
从不育分析手册中进化的药物微生物手册(PMM),是美国药物学微生物学测试的美国药物(USP)的补充,包括抗菌效率测试,包括微生物测试,非固醇测试,无效测试,无效性内结构测试,环境测试,设备,设备,颗粒化。本手册的目的是在所需的知识,方法和工具上提供一个ORS/CDR协调的框架,并应用评估ORS测试实验室中医疗产品的安全性和有效性所需的适当科学标准。PMM已扩展为包括一些快速筛选技术以及一个新的部分,该部分涵盖了对进行团队检查的微生物学家的检查指导。
在战略投资组合发展方面,我们收购了 Brightsight,这是全球领先的网络安全评估实验室网络,提供基于芯片的安全支付系统、安全身份解决方案和物联网平台。此次收购大大加速了我们成为网络安全领域全球 TIC 领导者的战略。我们进行了四次收购,以扩大我们在健康科学、食品和化妆品供应链中的影响力。其中包括配方研发领域的领导者 Quay Pharmaceuticals Limited,进一步扩大了我们在健康科学供应链中的定位。我们还继续整合 2020 年 12 月收购的 SGS Analytics,这大大加速了我们在大批量环境测试中的欧洲中心辐射实验室模式。
空间环境对低地球轨道柔性材料的影响 G. Bitetti (1) 、S. Mileti (1) 、M.Marchetti (1) 、P. Miccichè (1) (1) 意大利罗马“La Sapienza”大学航空航天和宇航工程系,Via Eudossiana 18,邮编 00184。电话 0039-0644585800,传真 0039-0644585670 电子邮件:grazia.bitetti@.uniroma1.it 摘要 未来的长期太空任务基于应用新型材料来替代金属材料,保持相同的机械和热光性能,但降低任务成本并满足结构设计要求。新的充气技术涉及使用柔性材料(纺织品、薄膜和低密度泡沫),以便获得小体积的可包装结构,从而增加有效载荷能力。由于与操作环境相关的破坏性因素,正确选择材料的起点是空间环境测试活动。本工作涉及对用于低地球轨道 (LEO) 充气应用的一些纺织品的测试活动,特别是 Kevlar、Zylon 和 Vectran。已经使用位于罗马 La Sapienza 大学航空航天系的 SASLab 实验室开发的两种不同的空间环境模拟器进行了环境测试,以研究高真空、热循环和原子氧效应。1. 简介未来长期太空探索任务最重要的要求是使用比机械同类产品更轻、更便宜的材料来设计空间结构,以保持相同的结构可靠性并延长使用寿命。将它们包装在更小的体积中的可能性可以降低任务成本。为了满足上述目标,已经开发出一种基于柔性结构设计的有前途的技术。充气技术涉及可展开结构,无论是否可刚性化,它都使用薄材料来减轻重量和提高包装效率:体积比最好的传统系统减少两倍以上。可展开结构可以轻松适应各种形状,生产成本低。过去,可扩展结构一直用于建造空间天线、太阳能电池阵、遮阳板和太空服。目前,越来越多的