鉴于我们的研究能力,Amgen BC已大力投资于扩展其现场数据和技术专业知识,并由数字,技术与创新(DTI)部门的创新努力奠定了基础。Amgen BC的20多名专业DTI专业人员在增强整个研发范围内的Amgen数据分析,数字技术和计算建模功能方面发挥了关键作用。Amgen BC强大的技术套件(实验性和数字)提供了在进入时间消费,昂贵的临床试验之前识别最佳潜在治疗候选者的能力。这使Amgen的全球研究团队能够将早期候选分子推向表征和临床前开发的其他阶段。这些协作努力导致了六种Amgen生物学药物的发现和开发,这些药物正在改善世界各地患者的生活和健康。不列颠哥伦比亚省对STEM教育的承诺
致谢 由于我们的 2023 年第一季度基准测试方法需要更多来自光伏 (PV) 和存储行业的直接投入,因此今年我们与比近几年更多的专家参与者进行了交流。 2023 年 2 月,我们参加了在加利福尼亚州长滩举行的北美国际太阳能展览会和北美储能展览会,在那里我们收集了 100 多家参展商的现场数据和见解。 会议结束后,我们对大约 40 位与模块、逆变器、储能系统和系统平衡组件的制造和销售以及光伏和储能系统的安装相关的专家进行了深入的访谈和通信。 我们感谢所有这些参与者的帮助。 本报告中汇总并匿名化了结果数据,以制定我们的 2023 年第一季度成本基准。 但是,为了尊重可能希望保持完全匿名的参与者的意愿,我们在此仅列出同意被致谢的参与者。
摘要 — 太阳能家庭系统 (SHS) 为农村离网社区提供低成本电力接入。电池是系统的重要组成部分,但由于使用寿命较短,它们往往是第一个出现故障的点。使用现场数据,这项工作为不同的 SHS 用例模拟了铅酸电池的退化,并找出了每种情况下的主要老化机制。除最高使用情况外,腐蚀是所有情况下的主要老化机制。这是由于长时间处于高充电状态 (SOC) 并因此导致高电压造成的。针对腐蚀占主导地位的用例之一,提出了一种新的电压控制方案,其中两次完全充电之间的天数取决于电池经历的退化机制。模拟新的电压控制方案可使电池寿命增加 25%,同时确保用户不会损失负载。索引术语 — 能源接入、铅酸电池寿命、太阳能家庭系统、农村电气化、电压控制
摘要。土工布都是用于掩埋的应用,而无需暴露于阳光。但是,安装之前可能会发生短暂的阳光。由于安装和土壤埋葬的潜在延迟,需要材料才能达到紫外线阻力。人造紫外线风化将评估意外接触阳光的潜在风险。光降解反应考虑与暴露条件的相互作用以及对阳光的聚合物敏感性。基于实验室测量和现场数据,本文评估了光强度,温度和湿度对气候的影响。使用其紫外线灵敏度与有效辐照度的聚合物关系,计算出累积指数,以降低土工布服务寿命从暴露到阳光。人工风化循环,并与聚丙烯和聚对苯二甲酸酯的特定降解机理进行比较,并与特定的降解机制有关。反应速率分别与温度相关,分别针对每个聚合物。提出了使用辐射能量和温度的模型,以指导部分紫外线暴露的土工织物的寿命预测。
使用案例 • 网络分离 − 物理上防止数据从安全域泄漏到非安全域 • 流式视频源 − 将非安全现场资产的高清视频传送到安全环境 • 实时传感器源 − 促进现场数据从传感器到任务操作中心的主动流式传输 • 多播/广播 − 将数据从单一来源分发给授权接收者 • 关键基础设施保护 − 保护工业控制系统网络并协助遵守北美电力可靠性公司关键基础设施计划 (NERC CIP) • 批量文件传输 – 自动在共享网络文件夹之间进行高速文件传输并简化数据库复制 • 隔离分离 − 确保在受控沙盒环境中隔离恶意数据 • 云分离 − 提供敏感云基础设施之间的安全连接 • 安全电子邮件消息传递 − 允许向安全域发送单向电子邮件
无人驾驶汽车(UAV)技术的成熟和可伸缩性为彻底彻底迅速交付提供了变化的机会。本研究探讨了将无人机与公共交通工具(PTV)整合在一起,以建立一种新颖的交付范式,从而增强了公共交通运营商的收入,并提高了运输系统的效率,而不会损害乘客的便利或运营效率。采用六边形规划技术,本研究确定并量化了PTV的可用时空资源以进行无人机集成。这涉及将迅速交付订单的时空动态与PTV乘客的临时动态保持一致,该动态基于北京海德地区的现场数据。利用这些输出,我们定量分析将无人机与PTV集成在增加公共交通收入以及减少碳排放和缓解拥塞的潜力的好处。此外,我们通过预测未来的交付需求增加来量化UAV-PTV集成的长期收益。基于获得的定量结果,本研究讨论了实用和政策的影响,以支持无人机与PTV的可持续融合。
摘要:多年来,人们对维护任务的认识已发生了深刻的变化。不同的方法已应用于航空、核能、化学和制造业等工业领域。提出的方法包括以可靠性为中心的维护方法、状态监测和基于风险的检查。在海运业中,维护大致细分为三类:纠正性(或运行至故障)、预防性(或基于时间间隔)和预测性维护。维护不善的船舶会增加运营成本,降低船舶可用性和可操作性,导致船上频繁检查并造成船员过度忙碌。此外,船东/管理者试图将他们在实际海洋领域的宝贵经验与技术进步相结合,以尽量减少与维护相关的障碍。本文介绍了船舶维护的背景及其各种类别。还使用故障模式、影响和危害性分析 (FMECA) 和故障树分析 (FTA) 工具展示了一种结合风险和危害性方法的新方法。此外,使用实际现场数据的机械相关设备案例研究证明了上述方法的结果。主要结果是识别关键项目和操作程序以及确定所检查系统的可靠性。
首先是唯一的。然而,当检查大量案例时,此类事故的某些一般特征就会显现出来。图 3 旨在以简化的方式表明如何表示这种通用模型。通用模型称为 MACHINE(使用分层影响网络的事故因果模型)。所有事故的直接原因是人为错误、硬件故障和外部事件的组合。图 3 对这些进行了更详细的分解。主动、潜在和恢复错误已经讨论过。在硬件故障的情况下,这些可以分为两类。随机故障是可靠性模型考虑的正常故障,例如由于预期的磨损过程。从测试和其他来源可以获得有关此类故障分布的大量数据。人为故障包括两个子类别,一类是由于组装、测试和维护等领域的人为行为造成的,另一类是由于固有的设计错误造成的,这些错误会导致不可预测的故障模式或缩短生命周期。所有可靠性工程师都知道,从现场数据得出的大多数组件故障率实际上包括人为故障的影响。从这个意义上讲,这些数据不是组件的固有属性,而是取决于人为影响(管理、
过去半个世纪,计算机技术和电子技术的飞速发展彻底改变了我们的日常生活,为所有科学和工程分支提供了强大的新工具。水利工程实践和研究也不例外。例如,笔记本电脑每秒执行的浮点运算比四十年前推出的 Cray 1 超级计算机高出几个数量级,如今通常用于运行数值模型,以解决各种水利问题。此类模型结果的可信度取决于使用现场或实验室数据进行验证的程度。在大多数情况下,现场数据的收集非常昂贵且耗时,因此使用实验室数据是模型验证的更具吸引力的选择。此外,水利实验室中的物理模型提供了在受控条件下进行测试的可能性,并可以提供对基本过程的新见解,有助于加深对基础物理的理解。利用当今技术提供的工具,研究人员和从业人员能够分析复杂的流动问题和过程,这导致了液压实验室发展的两种趋势,即使用越来越复杂的仪器和设计用于研究特殊流动问题的创新实验设施。
北极是一个对环境变化非常敏感的地区。大气、陆地、冰冻圈、海冰和海洋之间存在着非常密切的相互关系和微妙的平衡,特别是在太阳能保留、辐射预算和水文循环方面。这对该地区的物理、化学和生物过程产生了很大的影响。由于环境恶劣,北极地区缺乏能够支持科学理解关键过程的基本观测数据。大多数现有数据是通过时间有限的研究项目收集的。这种过程知识的缺乏反映在预测模型(操作和气候)中的大量错误中。可以预见,对北极地区的监测将严重依赖卫星观测,并辅以更传统的现场平台。海洋界尤其将继续使用其他几种平台,如船舶、剖面浮标、滑翔机、系泊设备、AUV 等。监测北冰洋内部。此外,地球观测卫星严重依赖精确的现场观测来校准卫星传感器和验证卫星测量值。哥白尼服务和空间组件在不同场合对能否及时获得来自北极地区的足够相关现场数据表示强烈担忧。