摘要 良性前列腺增生 (BPH) 是老年男性的常见疾病,其特征是前列腺非恶性增大,导致下尿路症状 (LUTS),严重影响生活质量。随着针对潜在病理生理的各种药物的引入,BPH 的药物治疗已经发展起来。本综述重点介绍了当前和新兴的 BPH 药物疗法,重点介绍其作用机制、临床疗效、安全性和改善患者预后的潜力。主要疗法包括 α-肾上腺素能受体拮抗剂、5-α-还原酶抑制剂和联合疗法,可缓解症状并阻止疾病进展。本文还讨论了新兴方法,例如新型 β-3 肾上腺素能激动剂、磷酸二酯酶-5 抑制剂以及抗炎和雄激素受体靶向药物的潜在作用。此外,本综述探讨了针对性和精准医学的有希望的发展,旨在为 BPH 患者制定个性化治疗策略。本文探讨了药理学领域的挑战和未来前景,以指导临床实践并促进该领域的进一步研究。关键词:良性前列腺增生、BPH、药物治疗、α-受体阻滞剂、5-α-还原酶抑制剂、新兴药物、精准医疗、前列腺健康。
摘要 当所选协议缺乏损失容忍度时,信号丢失会对量子密码学的安全性构成重大威胁。在量子位置验证 (QPV) 协议中,即使相对较小的丢失率也会危及安全性。因此,目标是找到在实际可实现的丢失率下仍能保持安全的协议。在这项工作中,我们修改了 QPV 协议的通常结构,并证明这种修改使验证者和证明者之间潜在的高传输丢失对于一类协议而言与安全性无关,该类协议包括受 BB84 协议 ( QPV f BB84 ) 启发的实用候选协议。这种修改涉及光子存在检测、证明者的短暂时间延迟以及在继续之前进行游戏的承诺,将总体丢失率降低到仅证明者的实验室。经过调整的协议 c- QPV f BB84 随后成为一种具有强大安全性保证的实用 QPV 协议,即使面对使用自适应策略的攻击者也是如此。由于验证者和证明者之间的丢失率主要由他们之间的距离决定,因此可以在更长的距离上实现安全的 QPV。我们还展示了所需光子存在检测的可能实现,使 c-QPV f BB84 成为解决 QPV 中所有主要实际问题的协议。最后,我们讨论了实验方面并给出了参数估计。
1. Zhao N、Qi J、Zeng Z、Parekh P、Chang CC、Tung CH 等。使用简单的阳离子聚合物纳米复合物转染难以转染的淋巴瘤/白血病细胞。《Journal of Controlled Release》。2012;159(1):104-10。2. Meacham JM、Durvasula K、Degertekin FL、Fedorov AG。细胞内递送的物理方法。《Journal of Laboratory Automation》。2014 年 2 月;19(1):1-18。3. Kaestner L、Scholz A、Lipp P。转染和基因递送的概念和技术方面。《Bioorganic & Medicinal Chemistry Letters》。2015 年 3 月;25(6):1171-6。4. Mosier DE。“逆转录病毒载体的安全注意事项:简要回顾”简介。《Applied Biosafety》。2016;9(2):68-75。 5. Glover DJ、Lipps HJ、Jans DA。《面向人类安全、非病毒治疗性基因表达》。《自然遗传学评论》。2005 年 4 月 10 日;6(4):299-310。6. Kim TK、Eberwine JH。《哺乳动物细胞转染:现在和未来》。《分析和生物分析化学》。2010 年;397(8):3173-8。7. Rols MP。《电通透化:一种将治疗分子递送到细胞中的物理方法》。《生物化学与生物物理学报》(BBA)-生物膜。2006 年 3 月;1758(3):423-8。8. Jordan ET、Collins M、Terefe J、Ugozzoli L、Rubio T。《优化原代细胞和其他难以转染的细胞中的电穿孔条件》。《生物分子技术杂志》。2008 年; 9. Chicaybam L、Barcelos C、Peixoto B、Carneiro M、Limia CG、Redondo P 等人。一种用于哺乳动物细胞遗传改造的有效电穿孔方案。生物工程与生物技术前沿。2016;4:99。10. Machy P、Lewis F、McMillan L、Jonak ZL。通过电穿孔将基因从靶向脂质体转移到特定淋巴细胞。美国国家科学院院刊。2006;85(21):8027-31。11. Maurisse R、De Semir D、Emamekhoo H、Bedayat B、Abdolmohammadi A、Parsi H 等人。将 DNA 转染到来自不同谱系的原代和转化哺乳动物细胞中的比较。BMC 生物技术。2010;10。 12. Gahn TA、Sugden B. 电穿孔显著、短暂抑制伯基特淋巴瘤细胞系中 Epstein-Barr 病毒潜伏膜蛋白基因的表达。J Virol。1993;67(11):6379-86。13. Goldstein S、Fordis CM、Howard BH。电穿孔 G2/M 同步细胞并用丁酸钠处理后,转染效率提高,细胞存活率提高。Nucleic Acids Research。1989;17(10):3959-71。14. Liew A、André FM、Lesueur LL、De Ménorval MA、O'Brien T、Mir LM。使用方波电脉冲对人类间充质干细胞进行可靠、高效、实用的电基因转移方法。人类基因治疗方法。2013 年 10 月;24(5):289-97。 15. Kreiss P, Cameron B, Rangara R, Mailhe P, Aguerre-Charriol O, Airiau M 等。质粒 DNA 大小不影响脂质体的理化性质,但可调节基因转移效率。核酸研究。1999;27(19):3792-8。16. Lesueur LL, Mir LM, André FM。克服体外原代细胞大质粒电转移的特殊毒性。分子疗法 - 核酸。2016;5:e291。17. Germini D、Saada YB、Tsfasman T、Osina K、Robin CC、Lomov N 等人。基于一步法 PCR 的检测方法用于评估基因组 DNA 编辑工具的效率和精度。分子疗法 - 方法与临床开发。2017 年 6 月;5(六月):43-50。18. Georgakilas AG、Martin OA、Bonner WM。p21:双面基因组守护者。分子医学趋势。2017 年 4 月;23(4):310-9。
电动汽车 (EV) 正在上路。在电动乘用车和中型和重型卡车的带动下,电气化正在渗透到所有交通方式,包括铁路、越野和海运。2023 年,美国新购买的电动汽车超过 140 万辆,1 约占美国轻型汽车销量的 10%。迄今为止,美国道路上有超过 580 万辆轻型电动汽车,2 为这些车辆提供动力的电力需求正在迅速增长。与此同时,电网正在经历从集中控制到更分散资产的重大转变。数字技术和清洁能源正在重塑客户与电力系统的互动方式,使客户能够更积极地参与日常电力需求。
Şekiller Listesi ............................................................................................................................................ vii
建筑材料的再利用以及消除建筑和拆除垃圾是建筑部门循环经济的核心。木材是最有前途的可持续建筑材料之一;但是,当前业务模型中没有法规,指导或途径来促进其循环系统或证明回收的木材材料适合新生活。这项研究调查了通过将木材重新使用或将木材升级到工程木制产品中(称为质量二级木材(MST)),调查了现有建筑物中挽救和重新利用木材元素的策略。通过对英国木材建筑供应链的主要利益相关者进行系统的访谈,包括建筑和拆除的承包商,这项研究确定了挽救结构性木材的障碍和机会,并重新实现了再生的再生木材。调查结果表明,尽管解构需要与拆除的技能不同,但实际上没有拯救木材的技术障碍。挑战与仔细解构所需的时间和后勤关系有关,重新建造了木材的修复以及缺乏能够重新使用其重新使用的已建立供应链。填海和重新利用的策略。
研究对象是信息技术在建筑行业中的应用过程。最棘手的领域之一是通过引入数字技术来提高建筑行业的效率。所进行的研究基于使用人工智能实施的方法的应用。该研究使用机器学习和模糊逻辑方法来标记视觉数据并分析其潜在威胁,以及降低所有可能的风险。这种方法的主要特点是,使用机器学习技术,可以在项目风险影响其利润之前降低项目风险。因此,将人工智能与 BIM 技术结合使用,可以根据实时数据、过去活动和其他因素预测建筑项目的工作,从而优化施工流程。随着人工智能继续分析公司数据,实施数字化流程所带来的好处将在未来项目中变得更加明显。这是因为所提出的使用模糊逻辑的方法具有许多特点,特别是,机器学习算法处理的信息越多,它们就越复杂。因此,它们提供了更多有用的信息并允许做出更好的决策。这为在项目工作中最大限度地降低风险和有效分配资源提供了机会。与传统信息技术相比,人工智能可用于构建基于知识的安全管理系统,并结合统计概率来帮助降低建筑项目的安全风险。关键词:人工智能、信息技术、BIM 技术、机器学习、建筑行业自动化。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
增强学习。Chem Pharm Bull(Tokyo)2020; 68(3):227-33。[Intage Healthcare Co.,Ltd。] https://www.intage-healthcare.co.jp/ Intage Healthcare Co.,Ltd.在医疗和医疗领域将市场研究和数据科学服务定位为其核心业务。我们与负责Intage Group的医疗保健领域的公司合作,通过数据分析和利用来提供解决方案。我们将通过增加从“医疗消费者”开始的医疗保健领域所有问题开始的数据价值来支持最佳决策。 * Kyowa Planning Co.,Ltd。,Intage Real World Co.,Ltd。,PlameD Korea Co.,Ltd。[Canvas Co.,Ltd。] https://www.canbas.co.jp/ Canvas Co.有史以来的第一个PIPLINE CBP501已成功完成了一项第2期临床试验进行第三线胰腺癌治疗,目前正在准备在欧洲进行3期临床试验的开始。利用知识在癌症免疫领域的积累,我们还专注于在同一领域探索和创建随后的管道。 [此事联系] Intage Healthcare Co.,Ltd。市场与价值洞察力部门价值与访问部门药物发现支持小组:村上公共关系官员:福卡亚电话:03-5294-8393(代表)电子邮件:pr-ihc@intage.com
