对于广大读者来说,我简要回顾一下这段“量子”之旅可能会有所帮助,因为大众媒体经常给人一种感觉,认为 QST 是突然发生的。我必须消除这种印象或信念。量子力学或量子物理学诞生于一百多年前,目的是解释某些似乎是“异常”的现象,根据当时已经获得非常强大结构的古典物理学定律和原理。从马克斯·普朗克的假设开始,量子物理学背后的基本理论原理大约在 20 世纪前 25 年建立起来,薛定谔、海森堡、马克斯·玻恩、尼尔斯·玻尔、狄拉克、冯·诺依曼、爱因斯坦、我们自己的 S.N. 做出了里程碑式的贡献。玻色、泡利、费米和其他几个人。结果表明,自然界在分子、原子和亚原子尺度上按照量子力学定律和原理运行;在日常宏观尺度上则按照经典力学运行。在原子和亚原子尺度上,物质的行为方式与我们日常经验完全相反,但量子力学的预测已被非常仔细和极其精确的实验证明是正确的。所有这些的顶峰就是粒子物理学的标准模型,它似乎解释了我们迄今为止在原子或亚原子领域观察到的一切。通过大量物理学家的持续和杰出贡献,还确定了单个原子和分子在聚集形成宏观系统(如我们熟悉的各种材料)时显然会失去其“个体量子特征”。
编码特征作为预测结果,邀请用户进行认知情况调 研。从用户调研数据的计算结果可知,用户对不同特 征编码的认知存在一定的共性,有共同的认知习惯。 1 )就属性语义来看,认知效率主要受色相、明 度、饱和度、尺寸、位置、形状的影响。色相:国军 标对色彩的应用有明确的规范,在进行色相编码时, 应考虑用户对专用色彩属性的认知习惯,严格遵守色 彩使用规范。对于没有硬性规定的色彩,也应以用户 过往的知识、经验为基础进行编码设计。如,在界面 设计中,一般认为红色表示危险,黄色表示警告,绿 色表示安全。明度:实验表明,在深色背景下,明度 越高信息等级越高。战术显控系统复杂性较高,合适 的明度编码设计适合应用于信息层级设计,能够有效 降低用户的学习成本。饱和度:饱和度取决于该色中 含色成分和消色成分(灰色)的比例。含色成分越大, 饱和度越大;消色成分越大,饱和度越小 [14] 。高饱和 度的色彩编码方式更能引起视觉关注,帮助用户集中 注意力。形状:在战术显控系统中,涉及形状属性的 元素主要为图形和符号,包括通用类和特殊类。在进 行形状编码时,现有图符应遵循沿用的原则,新的图 符应结合现实形态、行业背景进行设计,以符合用户 认知习惯、缩短学习过程,提高交互效率。尺寸:根 据实验结果显示,信息尺寸的大小与信息的重要等级 成正比,信息越重要,尺寸越大。位置:用户对显示 屏上的信息关注度依次为中间、左上方、右上方、左 下方、右下方 [15] 。在进行界面布局时,应注意信息等 级与其在界面中位置的一致性,同时要保证同类信息 的位置编码统一。 2 )就情感语义来看,战时用户的生理和心理负 荷较高,任务情景的不确定性易增加用户的操作压 力 [5] 。在进行交互界面设计时应考虑信息编码元素的 情感性。从实验结果来看,影响情感语义的特征主要 为形状和色彩。尖锐的形态容易让用户产生较大的心 理压力,而圆润浑厚的形状更容易使用户平静。在进 行形状编码时,可采用倒角的设计手法。根据蒙赛尔 色彩体系对色彩要素的划分及实验结果,战术显控系 统的主色可以选用冷色调,明度、饱和度不宜过高, 以避免色彩刺激增加用户的焦虑感。而对于重点信息 和即时变化类信息,可采用高明度或高饱和度的色 彩,以提高用户的警觉性。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
使用叶片组织作为外植物材料的单子蛋白转化的最新进展已扩大了能够转基因的草物种的数量。然而,矢量的复杂性和对基本形态调节剂的诱导切除率的依赖性迄今已有限的广泛应用。Plant RNA viruses, such as Foxtail Mosaic Virus (FoMV), present a unique opportunity to express morphogenic regulator genes, such as Babyboom ( Bbm ), Wuschel2 ( Wus2 ), Wuschel-like homeobox protein 2a ( Wox2a ), and the GROWTH- REGULATING FACTOR 4 (GRF4) GRF-INTERACTING FACTOR 1 (GIF1) fusion protein transiently在叶外植物组织中。此外,传统和病毒矢量的利他传递可以提供简化用于叶片转化的向量的机会 - 促进矢量优化并降低对形态学调节基因整合的依赖。在这项研究中,使用高粱双高粱叶叶植体促进胚胎calli的形成的能力,这是促进胚胎转化方案的关键步骤的能力。尽管传统的叶转换载体产生了可行的胚胎calli(43.2±2.9%:GRF4-GIF1,50.2±3%:BBM / WUS2),但采用GRF4-GIF1形态学调节剂的极端传统载体导致提高的效率,导致了改善的效率(61.3±4.7%)。无私的递送,分别为75.1±2.3%和79.2±2.5%的胚胎calli形成。由常规和病毒载体产生的胚胎calli产生了表达荧光记者的芽,并使用分子分析证实。这项工作为使用利他的载体和病毒表达的形态学调节剂提供了重要的概念证明,以改善植物转化。
二维(2D)电子系统中的表面等离子体引起了人们对其有希望的轻质应用的极大关注。然而,由于难以在正常的2D材料中同时节省能量和动量,因此表面等离子体的激发,尤其是横向电(TE)表面等离子体。在这里我们表明,从Gigahertz到Terahertz机制的TE表面等离子体可以在混合介电,2D材料和磁体结构中有效地激发和操纵。必需物理学是表面自旋波补充了表面等离子体激发的额外自由度,因此大大增强了2D培养基中的电场。基于广泛使用的磁性材料,例如Yttrium Iron Garnet和Difuluoride,我们进一步表明,等离子体激发在混合系统的反射光谱中表现为可测量的浸入,而浸入位置和浸入深度可以通过在2D层和外部磁性磁场上的电气控制很好地控制。我们的发现应弥合低维物理学,等离子间和旋转的领域,并为整合等离子和旋转器设备的新颖途径打开新的途径。
量子模拟器为研究强相关量子物质提供了强大的手段。然而,解释此类系统中的测量结果带来了重大挑战。在这里,我们提出了合成量子物质中信息提取的理论框架,以自旋玻色-爱因斯坦凝聚态实验中的量子猝灭为例。利用提供不同信息内容度量的非参数无监督学习工具,我们展示了一种与理论无关的方法来识别主要自由度。这使我们能够根据运算符的相关性对其进行排序,类似于有效场论。为了表征相应的有效描述,我们随后探索数据集的固有维度作为动态复杂性的度量。这揭示了数据结构的简化,这与所研究系统中时间相关的通用行为的出现相关。我们的无假设方法可以立即应用于各种实验平台。
由原子集合组成的量子比特因其对原子损失的抵抗力而具有吸引力。在这项工作中,我们考虑了一种实验上可行的协议,以相干方式从空间重叠的玻色-爱因斯坦凝聚态中加载自旋相关光学晶格。将每个晶格位置标识为一个量子比特,以空或填充位置作为量子比特基础,我们讨论了如何执行高保真单量子比特操作、任意量子比特对之间的双量子比特门以及无损测量。在这种设置中,原子损失的影响得到了缓解,原子永远不需要从基态流形中移除,并且不需要为量子比特设置单独的存储和计算基础,所有这些都可能是许多其他类型原子量子比特中退相干的重要来源。
设计出同时在外部和内部自由度上具有关联的大质量粒子对是一项重大挑战,但对于推进物理学和量子技术的基本测试至关重要。我们通过实验展示了一种生成具有明确自旋和动量模式的原子对的机制。该机制通过光学腔中的超辐射光子交换过程将来自简并玻色气体的原子耦合起来,通过单个通道或两个可辨别的通道产生原子对。该方案与碰撞相互作用无关,速度快且可调。我们观察到原子对的集体增强生成,并探测了动量空间中的自旋间相关性。我们描述了新出现的原子对统计数据,发现观察到的动力学与主要由相应原子模式中的真空涨落所引发的动力学一致。结合我们对涉及明确动量模式的相干多体振荡的观察,我们的结果为使用纠缠物质波的量子增强干涉测量和量子模拟实验提供了光明的前景。
波浪般的,玻色粒暗物质候选者(如轴和暗光子)可以使用称为卤素菌的微波腔检测到。传统上,卤素由在TM 010模式下运行的可调铜腔组成,但欧姆损失限制了其性能。相比之下,超导射频(SRF)腔可以达到约10 10的质量因子,也许比铜腔好5个数量级,从而导致更敏感的暗物质检测器。在本文中,我们首先得出了吊带镜实验的扫描速率与负载的质量因子Q L成正比,即使腔带宽比暗物质晕线线窄得多。然后,我们使用非偏高的超高质量SRF腔进行了概念验证搜索。我们排除了深色光子暗物质,具有χ> 1的动力学混合强度。5×10 - 16对于M A0¼5的深色光子质量。35μEV,几乎通过一个数量级获得了最深的范围排除在波浪状的深色光子上。