致谢 特别感谢那些通过讨论和回答问卷从管理角度提供方法描述和评估的人。我们特别感谢那些为 GCRMN 和本出版物提供资金支持的人:美国国务院、国家海洋和大气管理局、英国环境、食品和农村事务部、国际珊瑚礁倡议、世界自然保护联盟、CRC 珊瑚礁研究中心、道达尔基金会和国际珊瑚礁行动网络。科学和技术建议来自 AIMS、AGRRA(大西洋湾快速珊瑚礁评估)、CARICOMP、NOAA、ReefBase、Reef Check、CORAL 珊瑚礁联盟、大自然保护协会和 GCRMN 管理小组(联合国环境规划署、联合国教科文组织国际奥委会、世界自然保护联盟、世界银行、生物多样性公约秘书处)。来自 IMPAC(国际海洋项目活动中心)、CRC 珊瑚礁研究中心和 Alison Green 的人员提供了建议和支持。感谢 Tim Prior、Michael Phelan 和 Madeleine Nowak 的建议和校对。最后,特别感谢 AIMS 的生产人员 Wendy Ellery 和 Tim Simmonds;在紧张的时间安排下,他们又一次完成了非常专业的工作。
3D计算机视觉是ECEO的礁石水下视频,我们正在开发一种新方法来监视水下视频的珊瑚礁[2]。 来自跨国红海中心在以色列,约旦和吉布提的探险队的一部分收集的珊瑚礁地点的视频。 使用框架的语义分段对视频进行分析,并使用同时本地化和映射(SLAM)从访问的礁石站点创建3D点云,每个点都具有其RGB颜色及其语义类别(例如,>3D计算机视觉是ECEO的礁石水下视频,我们正在开发一种新方法来监视水下视频的珊瑚礁[2]。来自跨国红海中心在以色列,约旦和吉布提的探险队的一部分收集的珊瑚礁地点的视频。使用框架的语义分段对视频进行分析,并使用同时本地化和映射(SLAM)从访问的礁石站点创建3D点云,每个点都具有其RGB颜色及其语义类别(例如,岩石,沙子,活珊瑚,死珊瑚等)附件。可以收集此类视频的便利性有望通过数量级提高珊瑚礁监测方法的可伸缩性。
抽象的珊瑚礁产生了大量碳酸盐沉积物,在整个礁石局部系统中被重新分布。然而,几乎没有理解在整个礁石系统中运输在珊瑚礁外部产生的这种沉积物的特定过程。此外,尚未完全了解的电流,海溶波和省级波浪的独立贡献,这些贡献都不完全了解受礁石的存在的强烈影响。 在这里,我们表明,在礁石系统中,大多数悬浮的沉积物在海床附近运输,有时在振荡性流量过渡期间(即,在海上波浪波频率下的振荡流过渡时(即接近松弛的流动)以及在近海振荡速度阶段的振荡流过渡期间(即接近松弛的流动)在Instellagravity波波频率处悬浮较高。 这些波频率分别有助于悬挂式沉积物的离岸和陆上的运输,但净通量很小。 平均电流是主要的运输机制,并且比Sea-Swell和Instragravity Wave造成了近2个数量级的悬浮液通量。 虽然波可能不是沉积物运输的主要机制,但我们的结果表明它们是海底悬浮液的重要驱动力,并且有助于从礁石到海岸线的沉积物谷物尺寸分配。 随着海浪气候的变化,海平面的上升以及珊瑚礁底栖群落的组成变化,平均电流,海浪波和北极波波的相对重要性可能会发生变化,这将影响在整个礁林系统中重新分布沉积物的方式。的电流,海溶波和省级波浪的独立贡献,这些贡献都不完全了解受礁石的存在的强烈影响。在这里,我们表明,在礁石系统中,大多数悬浮的沉积物在海床附近运输,有时在振荡性流量过渡期间(即,在海上波浪波频率下的振荡流过渡时(即接近松弛的流动)以及在近海振荡速度阶段的振荡流过渡期间(即接近松弛的流动)在Instellagravity波波频率处悬浮较高。这些波频率分别有助于悬挂式沉积物的离岸和陆上的运输,但净通量很小。平均电流是主要的运输机制,并且比Sea-Swell和Instragravity Wave造成了近2个数量级的悬浮液通量。虽然波可能不是沉积物运输的主要机制,但我们的结果表明它们是海底悬浮液的重要驱动力,并且有助于从礁石到海岸线的沉积物谷物尺寸分配。随着海浪气候的变化,海平面的上升以及珊瑚礁底栖群落的组成变化,平均电流,海浪波和北极波波的相对重要性可能会发生变化,这将影响在整个礁林系统中重新分布沉积物的方式。
软珊瑚珊瑚礁生态系统的作用越来越受海洋温度,海洋酸性和污染的威胁。高温破坏了珊瑚与它们的共生藻类伴侣之间的关系,导致珊瑚漂白,而较低的pH却削弱了珊瑚骨骼,从而危害了它们的生存。石质珊瑚构成了珊瑚礁的结构基础,但软珊瑚(称为八焦)对于生态平衡至关重要,有助于生物多样性,栖息地供应,营养循环和礁石的韧性。
摘要。珊瑚礁是重要的生态系统,由于当地人类的影响和气候变化,其威胁越来越大。对珊瑚礁的有效,准确的监测对于它们的保护和管理至关重要。在本文中,我们提出了一个自动珊瑚检测系统,该系统只能使用一次(YOLO)深度学习模型,该模型是专门针对水下进化分析量身定制的。要训练和评估我们的系统,我们采用了一个由400个原始水下图像组成的数据集。,我们使用数据增强技术通过图像操纵将带注释的图像的数量增加到580,这可以通过提供更多样化的训练示例来改善模型的性能。数据集是从捕获各种珊瑚礁环境,物种和照明条件的水下视频中仔细收集的。我们的系统可以实现Yolov5算法的实时对象检测功能,从而实现有效而准确的珊瑚检测。我们使用Yolov5从带注释的数据集中提取区分特征,从而使系统能够概括,包括以前看不见的水下图像。在我们的原始图像数据集上,使用Yolov5成功实施了自动珊瑚检测系统,突出了先进的计算机视觉技术在珊瑚礁研究和保护中的潜力。进一步的研究将着重于完善算法以处理具有挑战性的水下图像条件,并扩展数据集以结合更广泛的珊瑚种类和时空变化。
[1] Waters等。(2024)标志性场所,集体效力和负面情绪在气候变化沟通中的作用。环境科学与政策,151,103635。[2] Andrews等。(2022)有太多帮助的方法:如何促进气候变化的缓解行为。环境心理学杂志,81,101806。[3]教堂等。(2023)扩大我们对驱动管理参与的原因的理解:社会资本与参与自然管理的意愿之间的关系。环境管理杂志,342,118128。[4] Waters等。(2023)塑料动作还是分心?海洋塑料运动影响了一般和敬业受众的公众参与气候变化。海洋政策,152,105580。[5] Goldberg等。(2016)气候变化,大障碍礁和澳大利亚人的反应。Palgrave Communications,2,15046。[6] Curnock等。(2019)大规模珊瑚礁珊瑚礁大规模珊瑚礁之后,游客的情绪和气候风险感知发生了变化。自然气候变化,9,535-541。[7] Dean等。(2021)“为礁石采取行动?”- 澳大利亚人不会将礁石保护与个人气候相关的行动联系起来。保护信,14,E12765。
国际珊瑚礁倡议要表示感谢,并感谢ICRI委员会成员在“将珊瑚礁整合到国家生物多样性战略和行动计划(NBSAPS)和ICRI秘书处审查和发布此文件的时代。ICRI特别感谢成员国,法国,帕劳和菲律宾的支持,以准备案例研究。额外的感谢也向ICRI成员,埃及,大屏障海洋公园管理局(礁石管理局),马来西亚,礁世界基金会,联合国环境计划世界保护监测中心(UNEP-WCMC)和野生动物保护协会(WCS)进行了洞察力和评论。全球生物多样性基金早期行动支持(GBF-EAS)项目和《生物多样性公约》(CBD)的秘书处(CBD)友好地提供了用于审查和更新NBSAP的补充信息。该指南文件是在美国秘书处制定的,用于实施“ 2021 - 2024年行动计划:扭转珊瑚礁的潮流”,并通过摩纳哥,瑞典政府和联合国环境环境计划(UNEP)的摩纳哥公国的财政支持使其生产成为可能。免责声明