摘要:现代航空业迎来了新关键要素的大规模传播,包括最初仅用于军事目的的遥控飞机系统 (RPAS)。近十年来,RPAS 已准备好成为各种民用应用中的新空域用户。尽管由于国家和国际飞行航空管理局 (FAA) 的限制,RPAS 目前只能飞入隔离空域,但它们在航空发展和经济投资方面具有显著的潜在增长。只有当获准飞入非隔离空域时,才能全面开发 RPAS,就像有人驾驶的民用和军用飞机一样。向 RPAS 披露空域的初步要求是为每个航空运营商实施国际民用航空组织规定的临时安全管理系统 (SMS)。根据欧洲的 SESAR-JU 和美国的 NextGen,这一问题出现在正在进行的空域管理重组背景下(SESAR-JU 已定义应如何在 SESAR 2020 中开展 RPAS 研究,所有这些都符合 2015 年欧洲 ATM 总体规划)。本文根据欧洲航空安全局 (EASA) 定义的操作场景,为实施风险模型和一般程序/方法以调查 RPAS 安全性提供了基础。该研究基于在 RAID(RPAS-ATM 集成演示)项目中进行的多次 RPAS 实验飞行所取得的结果。
关键词:无人机摄影测量、快速测绘、遥感、地震应急、3D 模型、损害评估 摘要:自 2016 年 8 月以来,意大利发生的多起地震群表明,深化测绘研究对于验证新战略的重要性,这些新战略旨在快速测绘和记录不同可访问和复杂的环境,例如城市环境和受损的建筑遗产。在应急响应中,技术进步的关键利用应该为预警、影响和恢复阶段获取和有效组织高比例的可靠地理空间数据。为了解决这些问题,哥白尼 EMS 现已在意大利中部地区的即时和广泛损害侦察中发挥了重要作用。然而,遥感数据的使用仍然受到视点、尺度和可检测细节问题的影响。事实上,无论是机载还是卫星拍摄的天底图像,都极大地限制了这些产品的可信度。无论是在第一次实地工作评估中,还是在随后的解释性损坏检测和快速制图生产的操作方法中,操作员参与的主观性仍然是一个悬而未决的问题。为了克服这些限制,引入无人机平台进行摄影测量,在节省时间、操作员安全、可靠性和结果准确性方面已被证明是一种可持续的方法:天底和斜向积分可以提供大型多尺度模型,其中包含与立面条件相关的基本信息。在意大利中部地震事件中进行的这项研究将重点关注无人机摄影测量在两个记录地点的潜力和局限性:佩斯卡拉德尔特龙托和阿库莫利。在这里,目的不仅限于描述一系列地理参考、块定位和多时间联合配准解决方案的策略,而且还要验证实施的管道作为工作流程,该工作流程可以集成到早期影响活动中的紧急响应操作干预中。因此,可以使用这种 3D 度量产品作为参考数据,以显着提高典型目视检查和测绘的可靠性,与传统的天底机载或卫星产品并驾齐驱。展示了在两个受损村庄进行的无人机采集,以强调嵌入在 DSM 重建和 3D 模型中的空间信息的含义,支持更可靠的损害评估。
本文介绍了创新型遥控 ETF 飞艇 1 的技术演示器的地面测试。测试活动旨在验证 ETF 的飞行控制系统,该系统基于推力矢量技术,与飞艇结构一起代表了 ETF 设计的一项重大创新。都灵理工学院航空航天系的一个研究小组与意大利一家小型私营公司 Nautilus 合作,几年来一直致力于 ETF (Elettra Twin Flyers) 的研究。这艘飞艇是遥控飞艇,具有高机动能力和良好的操作特性,即使在恶劣的大气条件下 2 。Nautilus 新概念飞艇具有结构和适当的指挥系统,使飞行器能够在正常和强风条件下进行向前、向后和侧向飞行以及以任何航向悬停。为了实现这些功能,ETF 演示器 3 采用了非常规的架构,该架构基于双船体,带有中央平面外壳结构、螺旋桨、机载电气系统和有效载荷(图 1)。作为主要指挥系统,气动控制面被六个螺旋桨取代,这些螺旋桨由电动机驱动,可在整个飞行范围内控制和操纵飞艇。本文分析了初步测试运行的结果,并将功率需求与专为 ETF 演示器 4 开发的燃料电池系统的性能进行了比较。I 简介 低成本多用途多任务平台 Elettra-Twin-Flyers (ETF) 正在由 Nautilus S.p.A 和都灵理工大学 [1] 合作开发。这是一种非常创新的遥控飞艇,配备了高精度传感器和电信设备。由于其独特的特点,它特别适合内陆、边境和海上监视任务以及电信覆盖范围扩展,特别是在那些无法进入或没有传统机场设施且环境影响是主要关注点的地区。ETF 的特点是机动性强,风敏感度低 [2]。飞行条件包括前向、后向、侧向飞行和悬停,无论是在正常风况下还是在强风条件下。为了实现这些能力,ETF 采用了高度非传统的架构。设计的关键点是创新的指挥系统,它完全基于由电动机驱动的推力矢量螺旋桨,由氢燃料电池供电。ETF 概念来自监视和监控目的。该飞艇设计具有很强的机动性,可以满足高水平的任务要求,可以操作高度专业化的仪器,例如轻型合成孔径雷达 (SAR) 系统或电光 (EO) 红外摄像机或高光谱传感器。为了满足平均监视要求,该系统的最低续航时间为 48 小时,可延长至 72 小时,高度操作范围为 500 至 1500 米。
a. 本规定提供了有关德克萨斯理工大学系统及其组成机构(以下统称为“大学”)在性别歧视、性骚扰、非自愿性接触、非自愿性交、性侵犯、性剥削、公共猥亵、性行为不端、人际暴力、约会暴力和跟踪方面的预防和教育工作的信息。本规定为学生和员工提供了他们的权利和选择,并解释了大学在意识到禁止行为指控后将如何继续工作,以符合大学的价值观并履行第七章、第九章、《反对暴力侵害妇女法案》(VAWA)、《校园性暴力消除法案》(SaVE)、《德克萨斯教育法典》34 CFR 第 106 部分和其他适用法律和法规的法律义务。
03/2021–02/2026 巩固补助金,欧洲研究理事会 (ERC) 11/2019–10/2021 量子/纳米启动脉冲计划,国家 Wetenschaps 议程 08/2019–07/2024 Vrij 计划,荷兰科学研究组织 (NWO);协调员 05/2019–05/2020 吸引资助, 欧盟研究与创新计划 01/2017–12/2020 项目, 物质基础研究基金会 (FOM) 11/2016–10/2021 Vidi 资助, 荷兰科学研究组织 (NWO) 03/2016–02/2021 启动资助, 欧洲研究理事会 (ERC) 07/2015–06/2019 项目, 物质基础研究基金会 (FOM) 05/2015–04/2019 纳米科学前沿, 代尔夫特理工大学/莱顿大学 11/2014–10/2019 启动资助, 代尔夫特理工大学
摘要 — 葡萄叶锈病是最常见的葡萄叶病之一,严重影响葡萄产量,导致全球葡萄产量损失 20%-40%。因此,及时有效地识别该病害有助于制定早期治疗方法,以控制其蔓延并减少经济损失。为此,近年来,人们广泛研究了使用计算机视觉和机器学习技术识别植物疾病。本文旨在提出一种基于高性能卷积神经网络 (CNN) 的图像检测器,该检测器在低成本、低功耗平台上实现,以实时监测葡萄叶锈病。为了满足嵌入式系统典型的严格约束,我们开发了一种基于 CANDECOMP/PARAFAC (CP) 张量分解的新型低秩 CNN 架构 (LR-Net)。这样获得的压缩 CNN 网络已在特定数据集上进行了训练,并在低功耗、低成本的 Python 可编程机器视觉相机中实现,以进行实时分类。进行了大量的实验,结果表明 LR-Net 在推理时间和内存占用方面都优于最先进的网络。
涉及未成年人的教育计划和活动是弗吉尼亚理工大学参与使命不可或缺的一部分。大学希望所有与未成年人一起工作的个人都遵守最高的行为标准。此外,所有与未成年人一起工作的个人都有责任根据本政策第 2.5 节和相关指导方针,按照政策和法律的要求报告已知或疑似虐待或忽视儿童的行为。大学员工还必须遵守弗吉尼亚理工大学政策 1025(骚扰、歧视和性侵犯政策)和 1026(第九条性骚扰和负责任员工报告政策)的报告要求。弗吉尼亚理工大学在大学不动产内或大学不动产上举办的所有未成年人活动和计划,或弗吉尼亚理工大学在任何地点开展的所有未成年人活动和计划(第 2.1 节中提到的活动和计划除外)都必须在青年保护办公室登记,并遵守该办公室制定的指导方针和程序。青少年保护办公室负责维护所有青少年计划的记录,监督犯罪背景调查系统,并为参与未成年人计划的计划人员制定培训计划。青少年保护办公室有权拒绝不符合本政策要求的计划的请求或停止该计划的开始。相关政策在第 5.0 节中引用。所有大学政策都适用于未成年人。指导与未成年人互动的联邦和州法律适用于所有大学教职员工、学生、志愿者以及参与弗吉尼亚理工大学主办或开展的活动和计划的与未成年人一起工作的人员。对本政策的更改必须由执行副总裁兼首席运营官 (EVPCOO) 批准。与本政策例外情况或本政策特定要求豁免相关的指南、程序和标准必须由 EVPCOO 任命的青少年保护咨询委员会 (YPAC) 审查,任何拟议的更改都必须由 YPAC 批准。 YPAC 的成员至少包括弗吉尼亚合作推广部 (VCE)、体育部、风险管理部、弗吉尼亚理工大学警察局、应急管理部、公平与无障碍部、学生事务部以及政策与治理部的代表,并接受大学法律顾问的指导。
如今,世界各地都在开发此类传感器。圣彼得堡理工大学提出的方法的特点是使用光纤敏感传感器,这种传感器不易受到电磁干扰和辐射的影响,在恶劣的外部条件下具有更高的生存能力。项目负责人、圣彼得堡理工大学应用物理与空间技术研究生院副教授、物理学和数学博士尼古拉·乌沙科夫表示,光纤传感器的使用在医学、石油和天然气部门、核工业等领域特别令人感兴趣。此外,这种传感器简化了最终产品的制造技术并降低了产品成本。
新加坡,2025 年 1 月 23 日 新加坡南洋理工大学 TARIPH 中心获首个国家肺部健康研究资助,牵头开展多机构研究项目 肺部健康学术呼吸计划 (TARIPH) 中心是由新加坡南洋理工大学 (NTU Singapore) 李光前医学院 (LKCMedicine) 牵头的国家级研究平台,该中心在获得新加坡首个国家呼吸健康研究资助后,将牵头开展一项多机构研究项目。在由新加坡国家研究基金会 (NRF) 资助、由新加坡卫生部 (MOH) 通过国家医学研究委员会办公室 MOH Holdings Pte Ltd 管理的 1000 万美元开放基金-大型合作资助 (OF-LCG) 下,TARIPH 中心将与合作伙伴开展以患者为中心的呼吸健康转化研究。 NTU 主导的研究项目汇集了来自九个组织的研究人员,包括所有公共医疗保健集群、医学院和公共机构,以及行业和国际合作伙伴,开展以亚洲为中心的肺部健康研究,涉及五个不同的综合主题。该团队将专注于亚洲特有的因素,以更清楚地了解肺部疾病患者的健康、环境、社会和文化需求,从而为患有慢性肺部疾病的亚洲患者提供个性化和精准的治疗。这将确保制定有效的国家和
在西北地区(TNO)的公共专上教育机构,Aurora学院是北部应用的教育和研究支柱。在史密斯堡,Inuvik和Yellowknife的校园和研究中心提供了多元化的课程,从专业和学习培训到学校改善,包括证书和文凭课程,以及与其他机构合作的文凭。Aurora学院承诺提供高质量的教育,应用研究活动和培训,以满足TNO社区的需求,并促进其学生,教师和员工的个人,文化和专业发展。