1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
在过去十年中,大规模网络事件在安全化言语行为中占据了重要地位。本论文展示了网络安全作为公共安全问题的概念化如何与国家和国际环境中的网络安全治理相联系并塑造网络安全治理。它探讨了从安全化、风险化、危机和社会技术系统文献中汲取的理论视角如何提高我们对大规模网络事件现象的理解,以及主要参与者如何解读此类事件。本论文包括四篇文章,其中包括利用深入访谈、文本分析和话语分析的案例研究。研究结果表明,在国家和国际网络政策环境中,安全逻辑正稳步向基于威胁的方向发展。案例研究还强调了恶意软件扩散的不稳定性质、定向网络攻击造成附带损害的趋势、大规模网络事件的跨境特征以及民事应急参与者和私营部门在网络安全治理中的核心作用。这些发现对网络空间日益安全化和军事化的影响进行了讨论。总体而言,本论文有助于我们理解网络安全在理论和实践上如何构建为一个安全问题,并采用了有助于探索国际网络安全的分析方法。
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
计算是技术专家的领域的日子早已一去不复返了。我们生活在一个计算技术(尤其是人工智能)渗透到我们日常生活的方方面面的世界,在各种情况下发挥着增强甚至取代人类决策的重要作用。人工智能技术可以通过处理错误模式来适应您孩子的理解水平;人工智能系统可以利用传感器输入的组合来选择和执行汽车的制动动作;具有人工智能功能的网络浏览器可以根据您过去对搜索的观察进行推理,以推荐新地点的新美食。人工智能的创新主要集中在“什么”和“如何”的问题上——例如,用于在网络搜索中查找模式的算法——没有充分关注可能的危害(例如隐私、偏见或操纵),也没有充分考虑这些系统运行的社会背景。在一定程度上,这是由科技行业的激励和力量推动的,在该行业中,更注重产品的重点往往会淹没对潜在危害和错误框架的更广泛的反思性担忧。 1 。但这种对“是什么”和“如何”的关注在很大程度上反映了计算机科学以工程和数学为重点的训练,这种训练强调工具的构建和计算概念的开发。由于这种严格的技术重点以及其在全球范围内的迅速应用,人工智能带来了一系列意想不到的社会技术问题,包括以种族或性别偏见的方式行事的算法、陷入延续不平等的反馈循环,或实现前所未有的行为监控,挑战自由民主社会的基本价值观。
本书包含 300 多个量子力学问题及其解决方案,涵盖了研究生一年级物理课程中常见的主题。本书特别关注每个问题的表述,并提供详细而广泛的解决方案以帮助理解。这些问题涵盖了从基本练习到更具挑战性的应用和标准材料的扩展的一系列难度。学生需要批判性地思考,并结合以前或同时学习的物理和数学技巧来解决更具挑战性的问题。每章都以一个简短的理论部分开始,阐述正在研究的特定主题,为后续问题设定背景并激发其灵感。本书非常适合自学,或作为高年级本科生和研究生及其导师现有量子力学教科书的有益补充。
Aritra Mandal 是 eBay 搜索团队的应用研究员。他专注于搜索质量,并利用 AI/ML、结构化数据和知识图谱来改进为 eBay 市场提供支持的搜索引擎。Aritra 获得了伯拉理工学院的计算机科学学士学位以及印第安纳大学-普渡大学印第安纳波利斯分校的计算机和信息科学硕士学位。
随着机器学习方法越来越多地用于增强人类决策能力,可解释人工智能 (XAI) 研究探索了将系统行为传达给人类的方法。然而,这些方法往往无法解释人类在与解释互动时的情感反应。面部情感分析研究人类面部的情绪表达,是了解用户如何参与解释的一个有前途的视角。因此,在这项工作中,我们的目标是 (1) 确定人们与 XAI 界面交互时哪些面部情感特征会很明显,以及 (2) 开发一个多任务特征嵌入,将面部情感信号与参与者对解释的使用联系起来。我们的分析和结果表明,当参与者未能有效地使用解释时,面部 AU1 和 AU4 以及唤醒的发生和值会增加。这表明面部情感分析应该纳入 XAI,以根据个人的互动风格个性化解释,并根据执行任务的难度调整解释。
摘要:我们表明,通过扩展主动推理框架,可以在目的论框架中制定目标导向的行动规划和生成。所提出的模型建立在变分递归神经网络模型上,具有三个基本特征。这些特征是:(1)可以为静态感官状态(例如要达到的目标图像)和动态过程(例如围绕物体移动)指定目标;(2)该模型不仅可以生成目标导向的行动计划,还可以通过感官观察来理解目标;(3)该模型根据从过去的感官观察推断出的当前状态的最佳估计,为给定目标生成未来的行动计划。通过在模拟移动代理以及执行对象操作的真实人形机器人上进行实验来评估所提出的模型。
