锂离子电池 (LIBs) 具有高能量密度和长寿命的特点,在便携式电子设备和电动汽车方面取得了显著成功 [1-4]。然而,由于有机电解液、锂储量不足和成本高等问题,LIBs 的进一步应用受到限制 [5-7]。因此,有必要开发替代性二次电池来取代 LIBs [8,9]。水系锌金属电池 (AZMBs) 已成为有竞争力的候选电池,因为锌 (Zn) 金属负极具有优异的理论容量 (820 mAh g −1 和 5855 mAh cm −3) 和低电化学电位 (−0.76 V vs. 标准氢电极)、丰富的锌资源,以及水系电解质固有的安全性和高离子电导率 (~ 1 S cm −1 vs. 1-10 mS cm −1 有机电解质) [10-16]。然而,锌金属负极存在析氢反应(HER)、腐蚀、钝化、枝晶生长等严重问题,导致可逆性差、循环寿命不稳定,甚至发生短路故障[17–23]。这些问题严重阻碍了AZMBs的实际应用。为了克服上述问题,人们提出了各种针对锌金属负极的稳定策略,包括表面改性、结构优化、电解质工程和隔膜设计[24–31]。然而,由于使用了远远过量的锌,这些研究尚未实现较高的锌利用率[32]。为了补偿Zn的不可逆损失,提高充放电过程的循环稳定性,研究人员通常构建Zn过量(Zn箔厚度≥100μm)、面积容量低(1-5mAh cm−2)的锌金属负极,导致负极与正极的容量比高(N/P>50),放电深度(DOD)较低(<10%)[33]。放电深度(DOD)是参与电极反应的容量占锌金属负极总容量的百分比:
在高电荷状态下缺乏结构稳定性,需要较低的放电截止电压才能获得足够的容量。[5] 相比之下,多聚阴离子化合物通常具有三维稳健框架,与层状氧化物相比,可提供更好的循环稳定性和更平坦的电压曲线。此外,由于多聚阴离子基团(如(PO 4 ) 3 − 、(P 2 O 7 ) 4 − 和(SO 4 ) 2 − )的诱导效应,可以获得更高的工作电压,[6] 使这些化合物成为稳定、高能量密度钠离子电池正极材料的有趣候选者。研究最多的多聚阴离子钠离子正极材料是含钒磷酸盐 Na 3 V 2 (PO 4 ) 3 (NVP)[7,8] 和氟磷酸盐 Na 3 V 2 (PO 4 ) 2 F 3 (NVPF)。 [9] NVPF 在 3.9 V 时的理论容量为 128 mAh g −1(每个分子式单位 2 个电子),比能达到 500 Wh kg −1。此外,可以通过用 O 取代 F 阴离子来调节 NVPF 的电化学性能,形成完全固溶体 Na 3 V 2 (PO 4 ) 2 F 3 − 2 y O 2 y(0 ≤ y ≤ 1)。[10] 例如,Bianchini 等人。表明,在低压端,可以将额外的Na插入Na3V2(PO4)2O2F中,放电时产生Na4V2(PO4)2O2F,这使得Na4V2(PO4)2O2F和NaV2(PO4)2O2F之间可以进行三电子循环。[11]然而,从NaV2(PO4)2F3到V2(PO4)2F3中提取第三个Na尚未被证明是可行的,因为Na提取电位很高(预计为≈4.9V),超出了有机钠离子电解质的稳定窗口。[12]为了降低这种高的Na提取电压,人们考虑使用阳离子替代;然而,只有少数金属阳离子(例如Al)可以取代NVPF结构中的V,其溶解度限制在0.2。[11,13]
图 1 – 2024 年 1 月 10 天干旱指标 10 图 2 – 全球太阳辐射(全球太阳图集) 11 图 3 – 各国平均辐射 11 图 4 – 各国输电网扩展。ECCO 基于 ESMAP 数据阐述。12 图 5 – 适合大规模光伏安装的实际区域 12 图 6 – 大规模光伏潜力图。ECCO 基于全球太阳图集数据阐述 13 图 7 – 带有当前电力基础设施的大规模太阳能光伏潜力图细节。ECCO 基于全球太阳图集数据阐述。13 图 8 – 各国实际区域土地份额。ECCO 基于 ESMAP 数据阐述。14 图 9 – 各国大规模光伏理论容量。ECCO 阐述。15 图 10 – 全球风能密度 16 图 11 – 风能潜力图。 ECCO 根据全球风能地图集数据进行阐述,16 图 12 – 各国风能平均功率密度。17 图 13 – 各国陆上风能理论容量。ECCO 阐述。 17 图 14 – 北岸可再生能源装机容量——当前与 2030 年 NECP 的对比 19 图 15 – 南岸可再生能源装机容量——当前与 2030 年 NECP 的对比 22 图 16 – 地中海东部的市场模型 23 图 17 – Desertec 项目基础地图 24 图 18 – Entso-e 电网地图 27 图 19 – 各国能源供应总量(联合国,2021 年) 30 图 20 – 各国二氧化碳排放总量(Climatewatch,2024 年) 30 图 21 – 各国战略与 2030 年当前可再生能源装机容量对比 31 图 22 – 按来源和国家划分的工业最终消费份额(联合国,2021 年) 32 图 23 – 工业低温热能电气化份额,约 30% 为 1 TW [TJth] 32 图 24 –工业中高温供热的电力消耗约 30% 1 TW [TJth] 33 图 25 – 北非国家对地中海的出口,不包括石油和天然气 34 图 26 – 欧盟 CBAM 中包含的产品 35 图 27 – 按来源和国家/地区划分的电力生产份额(联合国,2021 年) 36 图 28 – 按燃料和国家/地区划分的化石燃料减排份额约 1 TW 36 图 29 – 按燃料和国家/地区划分的建筑物最终消费份额(联合国,2021 年) 37 图 30 – 工业中电气化建筑有用热能份额约 1 TW [TJth] 37 图 31 – 烹饪用电气化有用热能份额约 1 TW [TJth] 38 图 32 – 按方式和国家/地区划分的运输消费份额(联合国,2021) 38 图 33 – 1 TW [车辆] 中电气化占公路运输比重约为 4% 39 图 34 – 1 TW 可再生能源对地中海能源系统的影响 39 图 35 – 1 TW 可再生能源避免的二氧化碳排放量 40 图 36 – 1 TW 可再生能源产生的化石燃料减少量 40 图 37 – 氢气生产项目 (IEA) 41 图 38 – 欧盟氢能骨干计划 42 图 39 – 已实现或授权的 LNG 再气化能力(黄色)和预授权能力(紫色)。ECCO 详细说明。 44 图 40 – 根据国际能源署公布的承诺情景,天然气在一次能源供应总量中的作用 45 图 41 – 通向欧盟的天然气供应走廊和流量(ENTSOG,2024 年) 45 图 42 – 通向欧盟的天然气供应走廊分布(ENTSOG,2024 年) 46
对应物,由于它们在相同浓度下每个原子释放更多电子的能力。7钙(Ca/ca 2+; 2.87 V与标准氢电极(She))的降低潜力略高于锂(li/li+; 3.04 v vs. she)的潜力略高,但仍比比较多价离子(例如铝(例如al/al/al 3+; 1.68 V vs. vsshe; 1.68 v vs. vsshe)和Magnesium(Mg; 1.68 v vs.she)和Magnesium(mg/mg/mg 2 v. vs.2.36)低得多。8,9这意味着钙可以在与锂的电压类似的电压下执行。钙另外具有2073 mA H CM 3的理论容量,类似于锂的钙容量,但低于镁(3832 mA H CM 3)和铝(8046 mA H CM 3),尽管它们的负降低势更低,导致其细胞电压较低。10–12钙具有比镁(Ca 2+;0.99Å,mg 2+;0.66Å)更大的有效离子半径,同时携带等效电荷,这可能会促进电极中较低的电荷密度,但比其他金属离子离子替代品的功率密度相对较高。13此外,钙具有较弱的电荷密度,与溶剂的配位较弱,而不是镁的动力学能力。14在审查可行的金属离子选项时,必须考虑地球丰度,因为它可以透视某些电池研究途径的寿命和可用性。铝含量最高的可行载体(8.13 wt%),其次是钙(3.63 wt%),钠(2.83 wt%),钾(2.59 wt%),岩浆(2.59 wt%),岩浆(2.09 wt%)和LITHIUM(0.09 wt%)和LITHIUM(0.09 wt%),0.000065 WT%)。15钙的含量较高,使其成为强大且可行的选择。钙离子电池(CIB)没有看到与钾和钠离子相同的成功,这是由于当前使用的电解质的性能不佳,Ca 2+在阴极材料中的互动不佳,低工作伏特(O 2.0 V)和钙金属的Anodic
由于其高的理论容量(3860 mAh g-1)和低电化学电位,体心立方(BCC)相的锂金属(Li Metal)被视为高能量密度可充电锂电池的终极负极材料。[1] 然而,由于锂金属形态不稳定性(LMI)[2]在重复循环中出现,导致内部短路、库仑效率低、电解质消耗、容量衰减迅速和安全隐患,锂金属电池的实际部署长期以来受到阻碍。[3–9] 锂金属可充电电池存在两个基本问题:锂枝晶穿透引起的短路会带来重大安全隐患[10,11] 和低库仑效率限制循环寿命。 [12] 我们认为前者是由于电沉积过程中锂金属受到压缩引起的,而后者是由于剥离过程中的拉应力引起的,从而引起空化、电子逾渗损失和死锂金属,以及固体电解质 (SE) 侧的断裂和离子逾渗损失。尽管迄今为止在阐明沉积半循环中锂金属的生长机制方面取得了很大进展 [13,14],但剥离半循环中锂金属的动力学仍然神秘莫测。在控制锂金属沉积/剥离的所有因素中,SE 界面相 (SEI),即锂金属与液体或固体电解质之间形成的固体界面,被认为对锂金属的形貌和生长/剥离动力学具有关键影响。 [15] 由于有机液体电解质在低于 ≈ 1 V (相对于 Li + /Li)时具有电化学还原不稳定性[2],SEI(实际上是一种临时的 SE 纳米膜)的形成被认为是液体电解质电池正常运行的必要条件。 [16–22] 或者,可以使用多孔混合离子电子导体 (MIEC) [11,23,24](它可能对锂金属具有绝对的热力学稳定性)来引导其沉积和剥离并控制 LMI。 无论可充电电池使用液体还是固体电解质/MIEC,[11,23,24] 剥离过程中张力驱动的 LMI 问题非常普遍,需要小心处理。根据能斯特方程,如果 U = 0 V,电位参考(Li + /Li)是基于环境压力(P = 1 atm)BCC Li Metal 定义的,那么进一步加压的Li Metal 将使平衡电位移动 U eq = −∆ PV Li / e,其中 V Li = 21.6 Å3 是 BCC 相中锂原子的体积,e 是基本电荷,[25,26] 因为沉积的锂原子需要抵抗额外的压力才能加入
实用产品开发。锂离子电池已成为替代镍氢电池的主要候选者,然而,对续航时间更长、充电速度更快、续航里程更远的电动汽车的需求,使得后锂离子电池材料、结构和系统的研究变得多样化[1-3]。一种潜在的、有吸引力的替代品是固态电池;其前提是用固态离子导体取代锂离子电池中常见的有机液体电解质[4,5]。宽电化学窗口、不可燃性以及实现锂金属阳极的潜力是将固态电池推向下一代储能前沿的优势。然而,要与传统的液体电解质竞争,实现高锂离子电导率是一个巨大的挑战。固态离子领域发展迅速,各种能够在中等温度下实现快速锂离子传输的锂离子导体正在实现下一代电化学存储。聚合物、凝胶、熔融盐和陶瓷电解质在集成到实际设备中时各有优势,也面临挑战;然而,硫化物基电解质已成为有力竞争者,其电导率可匹敌甚至超越有机液体电解质 [6]。LGPS、Li 7 P 3 S 11 玻璃陶瓷、银锗石 Li 9.54 Si 1.74 P 1.44 Cl 0.3 是表现出优异 Li + 电导率的电解质例子,尽管在电化学窗口和抵抗锂金属强还原电位的能力方面结果不一[5,7-9]。Sakamoto 等人 [10] 通过拉曼光谱证明了硫代磷酸锂 Li 3 PS 4 在与对称 Li-Li 电池循环后还原形成 Li 2 S 和 Li 3 P 产物,这已通过原位 XPS 实验证实并通过 DFT 计算进行预测 [11,12]。研究表明硫化物电解质还会与高压正极发生反应,形成的薄界面足以降低电池容量和循环能力。为实现该技术,用 LiNbO 3 进行表面改性可以阻碍化学交叉扩散并减少空间电荷层的锂损耗 [13]。高能正极研究对于实现全固态锂电池至关重要。硫作为高能量密度正极的出现是正极、电解质和隔膜技术的产物,旨在实现高倍率下的可逆容量。硫的优点是理论容量高(1675 mAh g -1 ),这平衡了低平均正极放电电位(~2.0 V),从而产生高理论能量密度(~2600 Wh kg -1 )。然而,必须克服重大挑战,例如硫和多硫化物溶解在电解质中,有机电解质的持续分解以及锂金属的树枝状生长。其结果是无法在长时间循环过程中保持容量,而解决方案则是采用精妙的材料设计和工程来封装和保护活性材料。碳、聚合物和隔膜技术在实现高负载和可持续硫正极方面都发挥了至关重要的作用 [14-16]。或者,更换有机液体电解质可以提供一条多方面的途径来解决持续的 SEI 形成和多硫化物溶解问题,因此固态 Li-S 电池有可能拥有出色的循环寿命。事实上,利用固体电解质已显示出无需封装活性材料就能提高容量保持率,这为高负载活性材料以增加能量密度并降低成本铺平了道路 [17-20]。为了实现这样的改进,阐明放电机制将加深对电化学反应的理解,并为进一步改进扩大电池电极所需的设计和工艺提供见解。在这里,我们通过分离碳、固态电解质(非晶态 Li 3 PS 4,LPS)和硫/硫化锂这三种基本成分的反应性,研究了固态硫阴极复合阴极的制备过程如何影响电化学放电。研究人员最近意识到