摘要:本文回顾了激光光热幻影技术在传感和测量现代电子设备中接头层热阻方面的最新应用。本文介绍了一种基于在连接固体之间形成薄中间层的界面热阻的简单理论模型。实验表明,焊料层的热性能不能简单地基于焊料成分热性能的平均值来评估。本文介绍了一种用于测量焊接和胶接接头热参数的激光热波方法。所开发的理论模型通过将理论结果与激光束偏转法获得的实验数据进行拟合,可以定量估计接头的局部热导率及其热阻。研究了含铅和无铅焊料制成的接头。焊料层热性能的异常分布可以用能量色散 X 射线光谱检测到的各种原子的扩散来解释。激光束偏转法可以揭示表面预处理质量对界面热阻的强烈影响。
我们计算了 K 及其涨落 ⟨ K 2 ⟩ 的期望值;两者都遵循与黑洞力学的贝肯斯坦-霍金面积定律相同的面积定律: ⟨ K ⟩ = ⟨ K 2 ⟩ = A 4 GN ,其中 A 是(极值)纠缠表面的面积。研究还表明,K 在 AdS 中受引力影响,因此会产生度量涨落。这些理论结果很有趣,但尚不清楚如何将这种关于全息量子引力的想法精确扩展到普通平坦空间。我们采取的方法是考虑度量涨落的实验特征是否可以决定平坦空间中量子引力真空的性质。特别是,我们提出了一个由 AdS/CFT 计算激发的理论模型,该模型重现了模哈密顿涨落的最重要特征;该模型由高占据数玻色子自由度组成。我们表明,如果该理论通过普通的引力耦合与干涉仪中的镜子耦合,且其应变灵敏度与引力波的灵敏度相似,则可以观察到真空涨落。
作为第一步,我们将开发一项超快实验,该实验基于适当数量的相位相干超短光脉冲的组合,以选择性地激发固体。我们将特别努力通过非共线光学参量放大器合成短至 10 飞秒的光脉冲(与米兰理工大学的 Giulio Cerullo 教授合作)。同时,我们将开发合适的理论模型来处理超快时间尺度和相互作用环境中的量子动力学。 作为第二步,我们将研究各种关联材料中的电子退相干动力学,例如 LaVO 3 和 V 2 O 3 ,它们是关联驱动的莫特绝缘体的典型例子。通过结合实验和理论结果,我们将探讨通过调整系统的温度、应变、激发协议和化学性质来增强退相干时间的可能性。我们还将研究相干操控 V 2 O 3 中的光诱导绝缘体到金属转变的可能性,以及可能相干控制其他系统中的相变(例如氧化铜中的超导性)。
摘要。在本文中,我们提出了一种有效的指数积分有限元方法,用于求解矩形域中的一类半线性抛物线方程。提出的方法首先使用具有连续的多线矩形基函数的有限元近似进行模型方程的空间离散化,然后采用明确的指数runge-kutta方法,用于产生半差异系统的时间集成,以产生全diScrete的数值解决方案。在某些规律性假设下,在h 1 -norm中测得的错误估计值是成功得出的,该方案具有一个和两个RK阶段。更值得注意的是,该方法的质量和系数可以用正交矩阵同时对角线,该基质提供了基于张量的乘积谱分解位置和快速傅立叶变换的快速溶液过程。还进行了两个维度和三个维度的各种数值实验,以验证理论结果并证明该方法的出色性能。
摘要。辣椒半导体由于其高功率转化效率而被广泛用作薄膜太阳能电池,尤其是柔性太阳能电池的吸收剂。它们也具有有趣的机械性能,使它们具有有希望的材料,可弹性,光线和薄的太阳能电池。在这项工作中,我们报告了Cuins 2,Cuinse 2和Cuin(S,SE)2吸收器太阳能材料的晶格常数和大量模量的第一原则计算。使用PBE-GGGA近似值和Ultrasoft伪电位在密度功能理论框架中使用量子意式浓缩软件软件包中实现的平面波进行所有计算。计算出的晶格常数与可用的实验研究很好地相关。使用Birch-Murnaghan的状态方程的三阶来描述能量体积和压力量关系,以计算吸收器太阳能材料的大量模量,这与特定条件下材料的硬度相关。除了Cuin(S,SE)2外,对Cuins 2和Cuinse 2获得的批量模量值与可用的理论结果非常吻合,这些结果已首次计算并报告。
© 阿菲永科卡特佩大学摘要 本研究以苯胺衍生物为原料,合成了一种新型的咪唑和喹啉基偶氮化合物 (MITPDQ),该苯胺衍生物用作合成用于治疗白血病的尼洛替尼的中间体,并对其进行了表征,并用 NMR、FTIR、UV、FTIR 和 MS 等光谱技术阐明了其结构。使用 DFT (B3LYP) 方法和 6-311G (d,p) 基组进行理论计算,以获得 MITPDQ 的优化几何形状和光谱数据。将实验结果与理论结果进行了比较,发现它们是彼此兼容的。利用优化的 MITPDQ 几何形状,还与癌症相关蛋白质进行了分子对接研究。从对接结果来看,MITPDQ 和 2XIR 蛋白之间的最高对接得分为 -11.0 kcal/mol。此外,还计算了 MITPDQ 的 ADMET 属性。通过ADMET和分子对接研究,我们得出结论,经过进一步的研究,MITPDQ具有成为候选药物的潜力。关键词 咪唑;喹啉;量子化学计算;分子对接;ADMET
本文从理论和实验两个方面研究了 C 4 + 与氢原子碰撞的电荷转移过程。我们的理论研究基于电子-核动力学方法,该方法用于研究态间和总电子捕获截面的贡献。我们的理论结果与 C 4 + 与氢原子碰撞的绝对总截面的实验测量结果相辅相成,该测量采用离子原子合并束技术,在橡树岭国家实验室的改进设备中以相对碰撞能量 0.122–2.756 keV/u 进行。我们发现,在实验结果中,在碰撞能量为 0.5 keV/u 附近观察到的结构是由于 3 ℓ 捕获截面、电子和核动力学的耦合以及实验配置中的接受角的综合贡献。我们还报告了 C 4 + 的动能损失和停止截面。我们发现,C 4 + 在相对碰撞能量介于 0.1 至 10 keV / u 之间时会获得能量,最大值为 ∼ 1 keV / u。我们的理论研究表明,要与合并光束实验结果进行比较,必须考虑合并路径长度对仪器的影响。
决策感知模型学习的想法,该模型应该在决策重要的地方准确地是准确的,并且在基于模型的强化学习中获得了突出的重要性。虽然已经建立了有希望的理论结果,但缺乏利用决策损失的算法的经验性能,尤其是在连续控制问题中。在本文中,我们介绍了一项关于决策感知强化学习模型所需组件的研究,并展示了能够实现良好表现算法的设计选择。为此,我们对该领域的算法思想提供了理论和实证研究。我们强调,在Muzero的作品系列中建立的经验设计决策,最重要的是使用潜在模型,对于在相关算法中实现良好的性能至关重要。此外,我们表明Muzero损耗函数在随机环境中有偏见,并确定这种偏见具有实际后果。在这些发现的基础上,我们概述了哪些决策吸引的损失功能最好在经验方案中使用,从而为该领域的从业者提供了可行的见解。
摘要:随着物联网 (IoT) 的发展,无论在哪个领域,部署的监控应用数量都在大幅增加:智慧城市、智慧农业、环境监测、空气污染监测等等。LoRaWAN(长距离广域网)架构具有长距离通信、抗干扰能力强和能耗低等特点,是支持此类应用的绝佳选择。但是,如果终端设备数量很多,LoRaWAN 的可靠性(以数据包传送率 (PDR) 衡量)会因过多的冲突而变得不可接受。在本文中,我们提出了两种不同的解决方案系列,以确保无冲突传输。第一个系列基于 TDMA(时分多址)。所有集群按顺序传输,并且允许属于同一集群的最多六个具有不同扩频因子的终端设备并行传输。第二个系列基于 FDMA(频分多址)。所有集群并行传输,每个集群使用自己的频率。在每个集群内,所有终端设备按顺序传输。从 PDR、终端设备能耗和支持的最大终端设备数量等方面比较它们的性能。模拟结果证实了理论结果,并显示了所提解决方案的高效性。
纳米复合溶液。然后通过傅立叶变换红外光谱(FTIR)和紫外线可见光谱(UV-VIS)正确分析所获得的溶液。在FTIR光谱中,PVP和CUO的主要区别带很明显。一些频段的强度下降的事实表明,PVP和CUO内部的官能团之间正在进行有效的反应。一项光学研究表明,当Cu +2离子生长时,膜的透射率和能带隙缩水。这些结果表明,装有CuO纳米颗粒的PVP矩阵具有合适的结构和光学特性,可提高其潜在的工业用途,特别是在光学组件和设备中。此外,由于将透射率强烈降低至1%,因此,具有1.0 wt。%CUO的PVP/CUO纳米复合样品可以用作电磁频谱的紫外线,可见和近IR区域的阻滞材料。理论结果还表明,HOMO/LUMO带隙随CUO填充剂而降低,而总偶极矩(TDM)增加。这些发现表明了如何将实验和理论工作结合在一起,以更好地了解分子结构的相互作用,从而揭示了纳米结构的意外特性。