腹泻是一个普遍的全球健康问题。2016年,腹泻的全球发病率超过44亿案,导致死亡人数超过160万,死亡率中排名第八。腹泻为患者造成巨大的医疗和医疗费用,并对社会产生巨大影响(Wang等,2021)。腹泻的诊断主要基于异常的粪便形态,而频繁的粪便形态的频繁排便称为伪diarrhea(Schiller等,2017)。严重的急性腹泻或慢性腹泻可以通过脱水,营养不良,免疫系统和社会经济负担对人类健康产生重大影响。越来越多的证据表明,肠道微生物群的失衡是一个重要因素,导致对各种病原体的敏感性增加以及随后的腹泻发作。肠道菌群与腹泻之间的关系很复杂,涉及多种调节机制。入侵病原体抑制了有益的肠道细菌的生长和破裂,导致失衡,使宿主更容易受到各种疾病和状况的影响,包括腹泻。另外,某些病原体会产生破坏正常肠功能的毒素,从而触发可导致腹泻的免疫反应(Li Y. X.等,2021)。几个因素导致肠道菌群失衡,其中一个因素是饮食习惯。高脂和高蛋白饮食已被观察到影响肠道微生物的组成。高脂和高蛋白饮食已被观察到影响肠道微生物的组成。这些饮食降低了有益的乳酸细菌的丰度,对于维持肠道健康至关重要。高脂饮食增加了小鼠肠含量中操作分类单元的数量,多样性和丰富性,从而导致肠道菌群中的结构和组成修饰。疲劳与高脂饮食结合使用,会扰乱微生物群,从而导致有害细菌的增加和有益细菌的减少。这种中断导致炎症因子升高,免疫因子降低以及最终发作腹泻。特别是某些细菌的存在,例如小杆菌,gemella和甲基杆菌,而有益细菌(如Pediococcus)会增加。gemella被发现与总胆固醇显着相关,突出了肠道微生物不平衡,失调的脂质代谢失调和高脂饮食在疲劳条件下引起的腹泻之间的联系(Li等,2022c; Zhou等,20222222223232323233232323232323232323232322222222222222222222. )。肠道微生态的微环境的变化也会导致肠道菌群营养不良。高温和湿度对肠道菌群的影响有害,尤其是导致乳杆菌种群降低,这可能是炎热且潮湿的腹泻的重要原因(Qiao等,2023b)。有益细菌通过调节肠道菌群的组成,抑制有害细菌的过度生长并减少氧化应激,从而在肠内起着至关重要的保护作用。他们通过各种机制,例如金属离子螯合能力,抗氧化剂系统,信号通路的调节,ROS酶产生和肠道菌群的调节。乳酸杆菌和双杆菌是生产乳酸,乙酸和丙酸的益生菌,有助于维持平衡的肠道微生物群和
Metaverse的想法对语言学习具有巨大的希望。在3D沉浸式环境中访问的综合数字和现实世界的现象,通过非正式的聊天,模拟和游戏为偶然的语言学习提供了强大的机会,以及通过个性化的,适应性的,适应性的,适应性的语言获取。为了实现该愿景,将需要多模式AI,超越了纯文本语言模型,在任何媒体组合中发出输入和输出。将多模式AI整合到虚拟现实(VR)将允许身临其境的体验是广泛的和免费的形式,取代了提供有限的学习者代理的脚本互动。同时,AI系统内置的内存功能将使根据学习者的目标/兴趣和能力水平来创建用于个性化互动的学习者资料。同伴学习者的共同点,以及AI系统模仿人类交流实践的增长能力,将使Metaverse的版本与人类和人工智能代理人共同成为社会学习的协作空间。尽管这样的系统将提供一个吸引人的学习空间,但需要解决隐私和道德的关注。对于学习者而言,将基于AI的虚拟相互作用与真实的人类到人类通信进行补充,例如通过参与虚拟交流,这将非常重要。引言元代码的概念起源于尼尔·斯蒂芬森(Neal Stephenson)的雪崩溃(1992年),自从Facebook于2021年将自己重新命名为“ meta”以来,它吸引了人们流行的兴趣。同时,我们需要成为要了解人类与人工智能之间复杂的,相互交织的相互作用,使用诸如社会材料和复杂性理论等框架,以及从非威胁性的洞察力,从整体的,生态的角度来看,超越工具功能并考虑AI(和VR)。主要是通过虚拟现实(VR)可访问的合并真实和虚拟世界的概念似乎在人类活动的许多领域都有希望,包括语言学习。虚拟现实有望通过生成AI的新兴集成来转移到新的,更高的功能。对于语言学习,有望将VR应用程序从脚本上移动到自由形式的互动,并拥有高度个性化的自适应语言学习的希望。AI有望成为启用类似于Metaverse的事物的重要合作伙伴,尤其是随着其多模式功能的增强。在此过程中,人类可能以多种方式更严重地依赖AI,尤其是将其成为创作和学习伙伴(Godwin-Jones,2024b)。要了解AI浓度的程度,我们将需要将AI视为一种技术工具,并考虑其在社会中的转变效果。在此过程中,查看生态框架 - 社会材料和复杂性理论等生态框架将是有帮助的,这些作品分析了人类,非人类(包括AI)和使用背景之间的交织在一起的动态。通过将AI集成到混合现实的舞会中,可以重新定义计算机辅助语言学习(Call)的领域。此外,与土著文化相关的包容性和关系本体也提供了一种拒绝二元论和还原主义,邀请人们接受不确定性和歧义的观点,有助于应对破坏AI代表人类社会。AI增强VR可能会为语言学习带来深刻的变化,为学习者和领导教师提供了兴奋的机会,以重新思考传统的语言学习和评估方法,并可能质疑指导语言学习的基本使命和目标。
AK Khandalkar, Dr. Kevin Gawli, Dr. Shubhankar Tarafdar and Dr. Mukesh Rathod DOI: https://doi.org/10.33545/26174693.2024.v8.i8Sb.1719 Abstract Dendrocalamus strictus Nees, commonly known as 'Male Bamboo', is a crucial non-timber forest resource with从建筑到传统医学的多方面应用。然而,该物种面临许多挑战,包括遗传变异性约束,对害虫的敏感性和栖息地退化。植物组织培养技术提出了一种有希望的途径,可以解决这些挑战并增强严格的遗传特征。植物组织培养技术在遗传改善的植物培养技术的潜在应用。具体来说,它深入研究了微繁殖,体细胞生成和遗传转化等方法论,突出了它们在克服常规育种方法的局限性方面的相关性。这些技术提供了对所选精英基因型植物再生的精确控制,从而实现了理想性状的快速繁殖和遗传多样性的保护。关键词:D。严格,胚胎发生,雄性竹子简介,典型的树突状nee,通常称为“雄性竹子”,是以其在农业,建筑和传统医学中的多种应用而闻名的竹制家族的重要成员。作为一种著名的非林木森林资源,其重要性超越了地理边界,是全球数百万人民的生计来源。尽管具有经济和生态的重要性,但D. Strictus仍面临许多阻碍其可持续利用和保护的挑战。鉴于这些挑战,植物组织培养技术已成为严格遗传改善的有前途的策略。 通过利用细胞生物学和生物技术的原理,组织培养为在无菌条件下植物细胞,组织和器官的传播,再生和操纵提供了控制的环境。 这种方法可以快速繁殖精英基因型,克服常规育种方法的局限性并加速改善品种的发展。 微繁殖,体细胞胚胎发生和遗传转化技术的整合具有增强严重性粘土杆菌遗传特征的巨大潜力。 这些方法学使研究人员能够选择和传播具有预期特征的优质基因型,例如活力,抗病性和胁迫耐受性。 此外,分子标记和生物技术工具的结合促进了与重要农艺性状相关的基因的鉴定和隔离,为标记辅助选择和基因编辑策略铺平了道路。 材料植物材料的选择:基于诸如高生物质产量,耐药性和对当地环境条件的适应性等理想性状(例如,培养基媒体)的基础媒体:这包括对特定的营养素,增长监管者,其他添加剂的生长和其他必要的生长,选择基础媒体,选择了诸如高生物质产量,耐药性和对当地环境条件的适应性之类的精英基因型(雄性竹子)。 竹组织培养的常见基础培养基制剂包括Murashige和Skoog(MS)培养基或木质植物培养基(WPM)。鉴于这些挑战,植物组织培养技术已成为严格遗传改善的有前途的策略。通过利用细胞生物学和生物技术的原理,组织培养为在无菌条件下植物细胞,组织和器官的传播,再生和操纵提供了控制的环境。这种方法可以快速繁殖精英基因型,克服常规育种方法的局限性并加速改善品种的发展。微繁殖,体细胞胚胎发生和遗传转化技术的整合具有增强严重性粘土杆菌遗传特征的巨大潜力。这些方法学使研究人员能够选择和传播具有预期特征的优质基因型,例如活力,抗病性和胁迫耐受性。此外,分子标记和生物技术工具的结合促进了与重要农艺性状相关的基因的鉴定和隔离,为标记辅助选择和基因编辑策略铺平了道路。材料植物材料的选择:基于诸如高生物质产量,耐药性和对当地环境条件的适应性等理想性状(例如,培养基媒体)的基础媒体:这包括对特定的营养素,增长监管者,其他添加剂的生长和其他必要的生长,选择基础媒体,选择了诸如高生物质产量,耐药性和对当地环境条件的适应性之类的精英基因型(雄性竹子)。竹组织培养的常见基础培养基制剂包括Murashige和Skoog(MS)培养基或木质植物培养基(WPM)。