摘要 通过聚合酶链式反应,可以从基因组 DNA 中酶促扩增单拷贝序列。通过使用两种不同摩尔量的扩增引物,只需一个步骤即可扩增单拷贝基因并产生所选链的过量单链 DNA,用于直接测序或用作杂交探针。此外,可以使用等位基因特异性寡核苷酸在扩增反应中或作为测序引物直接测序杂合子中的单个等位基因。通过使用这些方法,我们研究了 HLA-DQA 基因座的等位基因多样性及其与血清学定义的 HLA-DR 和 -DQ 类型的关联。该分析揭示了总共八个等位基因和三个额外的单倍型。该方法在筛查人类基因突变方面具有广泛的应用,并有助于将基因的酶促扩增与自动测序联系起来。
我们使用生成式人工智能从超过 120,000 份企业电话会议记录中提取管理层对其经济前景的预期。总体衡量标准人工智能经济评分可以稳健地预测短期和未来 10 个季度的未来经济指标,例如 GDP 增长、生产和就业。这种预测能力是现有衡量标准(包括调查预测)的增量。此外,行业和公司层面的衡量标准提供了有关特定行业和个别公司活动的宝贵信息。整合管理层对公司、行业和宏观经济状况的预期的构成衡量标准进一步显著提高了对国家和部门 GDP 增长的预测能力和预测范围。我们的研究结果表明,管理层预期对经济活动具有独特的见解,对宏观经济和微观经济决策都有影响。
模拟在粒子和核物理学中起重要作用。它被广泛用于DECOTER设计和实验数据和理论模型之间的比较。在特定上,模拟依赖于蒙特卡洛方法,需要显着的计算资源。尤其是,这种方法不能扩展以满足高光度大型强子对撞机(HL-LHC)运行期间预期的大量数据所产生的增长需求。使用众所周知的仿真软件Geant4捕获的粒子碰撞和相互作用的详细模拟需要数十亿个CPU小时,构成了LHC实验的一半以上的计算源[1,2]。更具体地说,对热量表中粒子阵雨的详细模拟是计算最高的步骤。已经开发了利用重复使用先前计算或测量物理量的思想的模拟方法,以减少计算时间[3,4]。这些方法从专门进行到单独的实验中,尽管它们比完整的模拟更快,但它们的速度不够快或缺乏准确性。因此,粒子物理社区需要使用新的更快的模拟方法来建模实验。模拟热量计响应的可能方法之一是使用深度学习技术。,特别是最近的工作[5]提供了证据,表明可以使用生成性副本网络来效果模拟粒子阵雨。虽然实现了超过100 000倍的速度,但设置非常简单,因为输入粒子为
研究方向:本报告概述了具有高智力价值和更广泛影响的 IR-GenAI 系统的八个研究方向:(1)IR-GenAI 中的评估挑战和需求;(2)从隐性和显性的人为反馈中学习,以解决可能需要推理的复杂问题;(3)理解和建模不断发展的生成式 AI 信息访问系统的用户;(4)解决或缓解 IR-GenAI 新技术带来的社会技术问题的挑战和潜在解决方案;(5)开发个性化 IR-GenAI 系统的方法;(6)在开发 IR-GenAI 方法时扩展计算、数据和人力时的效率考虑;(7)信息检索在增强 AI 代理中的作用;(8)专门用于信息访问和发现的基础模型。
1引言生成建模在机器学习和人工智能领域起着重要作用,因为它提供了一种能够理解,解释以及在我们数据丰富世界中存在的复杂模式的功能工具包。通过将概率理论作为捕获给定数据集中固有不确定性的原则方法,这些模型旨在近似负责生成数据的基础分布或随机过程。因此,概率生成模型具有解决各种问题的潜力,包括生成新的数据示例,进行观察给出的推理,估计事件的可能性以及有关不确定信息的推理。但是,从数据中学习分布是一个挑战问题,通常需要在建模灵活性和概率推断的障碍之间进行权衡。早期生成模型的优先级优先考虑可牵引推理,通常是通过图形模型的形式将概率结构施加在random变量上[Koller and Friedman,2009]。因此,他们缺乏对复杂分布进行建模的挠性。自那以后,提出的可进行的概率模型(TPM)的领域随后发生了,并提出了端流的参数化和学习范式,从而在概率电路的统一概念下产生了广泛而流行的模型类别。从障碍性的角度设计,这些模型可以有效地推断和精确的概率推理,使其适合于要求快速准确计算的任务。但是,
血红素合成酶铁胆管酶(FECH)的活性与多种疾病有关。特别是它是眼睛中新血管化的介体,因此是预防失明的有吸引力的治疗靶标。但是,尚无类似药物的直接FECH抑制剂。在这里,我们着手使用高吞吐量筛选方法来鉴定FECH的小分子抑制剂作为潜在的治疗铅,以鉴定有效的FECH活性抑制剂。一类三唑吡啶甲酮的结构活性关系研究产生了类似药物的FECH抑制剂。这些化合物抑制细胞中的FECH,结合共晶结构中的活性位点,在多种体外测定中具有抗血管生成。这些有希望的化合物之一是脉络膜新生血管形成的小鼠模型中的抗血管生成。这项基础工作可能是新的治疗剂不仅对眼部新血管形成的基础,而且还可以抗击以Fech活动为特征的其他疾病。
语言多样性和语言正义。生成的AI技术默认以所谓的学术风格和语气制作文本,与通常称为标准的美国英语或白色主流英语紧密相符。UARK的分级合同可抵制特权主导语言品种。为此,在讨论这些技术时,我们需要记住它们经常擦除或刻板印象其他语言品种。有关更多信息,请阅读Alfred L. Owusu-Assah的“定义时刻,确定的程序,并继续擦除失踪人员”。
保修责任/免责声明的限制:出版商和作者对本工作内容的准确性或完整性不做任何陈述或保证,并特别否认所有担保,包括不限制特定目的的适合性保证。不得通过销售或促销材料创建或扩展保修。此处包含的建议和策略可能不适合每种情况。这项工作的出售是为了了解出版商没有从事法律,会计或其他专业服务。如果需要专业的帮助,则应寻求主管专业人士的服务。出版商和作者都不应对以下引起的损害赔偿责任。在本工作中将组织或网站称为引文和/或潜在信息来源的事实并不意味着作者或出版商认可组织或网站可能提供或建议的信息。此外,读者应意识到,这项工作中列出的互联网网站可能已经改变或消失了这项工作和阅读何时。
抽象是一种由仓鼠细胞中肿瘤抑制基因控制的血管生成的分泌抑制剂,与血小板和基质蛋白血小板传播的片段相似。这两种蛋白质在生化上相似,并且在免疫学上进行了交叉反应,并且可以在两个功能测定中互相代替。人类势头细胞蛋白在体内抑制了本体内的新血管形成,并且在体外抑制了内皮细胞的迁移,仓鼠蛋白GPL40也是如此。gpl4o和人血小板传播一样,使平滑肌细胞刺激了表皮生长因子。血小板传播基因已定位在人类铬-15。这些结果证明了泛素粘合剂糖蛋白血小板蛋白的功能,该功能可能在新生血管形成的正常生理下调中很重要。此外,它们增加了血小板传播可能是众多靶标分子之一,肿瘤抑制基因可以抑制肿瘤生长。
摘要:本研究提出了一种新的梦境记录方法,该方法结合了非侵入式脑机接口 (BMI)、思维输入软件和生成式 AI 辅助多模态软件。该方法旨在将 REM 睡眠期间的意识过程升华到半意识状态,并产生用于思维输入的信号。我们概述了一个两阶段的过程:首先,使用生成式 AI 开发多模态软件来补充文本流并生成多媒体内容;其次,采用基于摩尔斯电码的打字方式来简化信号要求并提高打字速度。我们通过建议一种涉及植入 BMI 的用户的控制系统来优化非侵入式信号,从而应对非侵入式 EEG 的挑战。文献综述重点介绍了 BMI 打字、意识过程升华以及生成式 AI 在基于文本提示的思维输入方面的潜力方面的最新进展。
