1个国家材料研究所,原子街,编号405a,077125罗马尼亚玛格勒; ciobanucs@gmail.com(C.S.C.); simonaiconaru@gmail.com(S.L.I。); catalin.negrila@infim.ro(c.c.n.); ghegoiuliliana@gmail.com(l.g。)2 Laboratoire Ond et Milieux Complexs(LOMC),法国国家科学研究中心(CNRS UMR 6294),Le Havre Normandy,75 Rue Bellot,法国76600 RUE BELLOT; damien.leduc@univ-lehavre.fr(D.L.); elkettani@univ-lehavre.fr(M.E.C.E.K.); philippe.zelmar@univ-lehavre.fr(P.Z.)3机械学系,布加勒斯特大学Politehnica,bn 002,313 Splaiul Independentei,6,060042 Bucharest,罗马尼亚4个细胞和分子病理学系Stefan S. Nicolau病毒学学院,罗马尼亚学院,罗马尼亚学院cbleotu@yahoo.com 5国家微型和纳米材料中心,布加勒斯特大学Politehnica,罗马尼亚布加勒斯特,布加勒斯特; truscaroxana@yahoo.com *通信:dpredoi@gmail.com(D.P.); predoi@gmail.com(m.v.p.)
胰腺癌(PC)是一种高度恶性的消化系统肿瘤,预后极差,通常在晚期阶段被诊断出来并迅速发展(1,2)。目前,PC的治疗仍然主要依赖化学疗法,中位总生存率少于1年(3 - 5)。尽管对PC的免疫疗法进行了连续探索,但与仅化学疗法相比,它并没有改善总体预后(6)。PC患者通常伴有其他慢性疾病,并且合并症的数量较高,表明治疗效率较低,整体生存期较短。Charlson合并症指数(CCI)是一个广泛使用的指标,可以通过计算慢性病的评分和体重来评估患者的整体健康状况。它已经在各种肿瘤类型中进行了广泛的研究,包括前列腺癌(7、8),结直肠癌(9),胰腺癌(10)等,但没有关于CCI指数在PC免疫疗法中的预测作用的报道。因此,我们对现实世界数据进行了分析,以评估PC患者中CCI评分的预后意见。
我们提供了DFG资助的协作研究中心的一部分1454“元炎症和蜂窝编程”(https://www.sfb1454-metaflammation.de/)。元炎症是指在各种疾病的进展中起重要作用的低级慢性炎症。了解元爆发的分子机制对于确定新的治疗靶标至关重要。您的任务:•基于实验的生物信息,统计和基于机器学习的分析,•通过广泛的实验技术生成的数据,•开发这些分析的方法,软件工具和管道,•与项目合作伙伴的协作,•数据分析和诠释,••数据分析和诠释,介绍和在journals和Journals中的科学成果。•您的个人资料:•(生物 - )信息学,计算生物学,计算机科学,数学,物理学或相关领域的大学学位(硕士学位或同等学历);替代地,生命科学学位与数据科学的往绩相结合,•统计学,生物信息学和/或机器学习方面的深刻知识,•R或Python的编程技能,•对生命科学主题的兴趣,尤其是免疫学过程,尤其是•书面和口语的能力。•我们提供:•与该地区最大的雇主之一一起,一项多种多样,具有挑战性(VBL),•大学体育运动可用的许多选择,•灵活的工作时间和在家工作的能力,•根据TV-L PAY 13年级(75%)的报酬。
摘要:纳米凝胶具有独特的优势,例如高表面对象比,可扩展的合成方法和易于定制的配方,使我们能够控制尺寸并引入刺激性的特性。由于其生物相容性,高药物负荷能力以及受控和持续的药物释放,它们的药物输送潜力很大。开发更绿色和可持续的过程对于大规模应用至关重要。我们报告了使用高稀释的自由基聚合化,在无需表面活性剂的情况下,使用高稀释的自由基聚合,在共价交联的基于丙烯酰胺的纳米凝胶中,具有不同量的丙烯酰基-L-磷脂的合成。使用水性合成导致纳米凝胶具有较高的单体转化和化学产率,以及负电荷的纳米凝胶的较低的多分散性和较小的颗粒大小,导致更有效的合成方法,导致更有效的合成方法,降低了起始材料的损失,可扩展性的潜力降低,成本降低。这些纳米凝胶对生物医学应用的适用性得到了细胞毒性研究的支持,表明人类神经母细胞瘤细胞系的生存能力没有显着降低。
组织工程(TE)已成为一种有希望的治疗策略,采用人工脚手架来再生功能性心脏组织,并为创新治疗方法提供了新的希望。一种直接产生可生物降解的导电聚合物复合材料的简单方法涉及将导电聚合物与可生物降解的聚合物直接混合。这种方法的灵活性可以开发出多种可生物降解的导电聚合物支架,这些支架已在组织工程和再生医学中进行了广泛探索。该技术成功地结合了两种聚合物类型的优势,但它可能面临诸如电导率和生物降解性的潜在折衷方案之类的挑战。本综述强调了通过选择适当的聚合物类型和比率来量身定制降解速率和电导率的潜力,从而确保适应各种生物医学应用。
近年来,生物化学、材料科学、工程学和计算机辅助测试领域的重大进步推动了用于分析遗传信息的高通量工具的发展。单细胞 RNA 测序 (scRNA-seq) 技术已成为在单细胞水平上解剖遗传序列的关键工具。这些技术揭示了细胞多样性,并允许以极高的分辨率探索细胞状态和转变。与提供群体平均数据的批量测序不同,scRNA-seq 可以检测出原本会被忽视的细胞亚型或基因表达变异。然而,scRNA-seq 的一个关键限制是它无法保留有关 RNA 转录组的空间信息,因为该过程需要组织解离和细胞分离。空间转录组学是医学生物技术的一项关键进步,有助于在单细胞水平上在组织切片中的原始空间环境中识别 RNA 等分子。这种能力比传统的单细胞测序技术具有显著的优势。空间转录组学为神经学、胚胎学、癌症研究、免疫学和组织学等广泛的生物医学领域提供了宝贵的见解。本综述重点介绍了单细胞测序方法、最新技术发展、相关挑战、各种表达数据分析技术及其在癌症研究、微生物学、神经科学、生殖生物学和免疫学等学科中的应用。它强调了单细胞测序工具在表征单个细胞动态特性方面的关键作用。
使用以下覆盖范围政策的说明适用于Cigna公司管理的健康福利计划。某些CIGNA公司和/或业务范围仅向客户提供利用审核服务,并且不做覆盖范围的确定。引用标准福利计划语言和覆盖范围确定不适用于这些客户。覆盖范围政策旨在为解释Cigna Companies管理的某些标准福利计划提供指导。请注意,客户的特定福利计划文件的条款[集团服务协议,覆盖范围证据,覆盖证证书,摘要计划描述(SPD)或类似计划文件]可能与这些承保范围政策所基于的标准福利计划有很大差异。例如,客户的福利计划文件可能包含与覆盖策略中涉及的主题相关的特定排除。发生冲突时,客户的福利计划文件始终取代覆盖策略中的信息。在没有控制联邦或州承保范围授权的情况下,福利最终取决于适用的福利计划文件的条款。在每个特定实例中的覆盖范围确定需要考虑1)根据服务日期生效的适用福利计划文件的条款; 2)任何适用的法律/法规; 3)任何相关的附带资料材料,包括覆盖范围政策; 4)特定情况的具体事实。覆盖范围政策与健康福利计划的管理仅有关。覆盖范围政策不是治疗的建议,绝不应用作治疗指南。在某些市场中,可以使用授权的供应商指南来支持医疗必要性和其他承保范围的确定。
进入加速课程后,学生可以选修适用于本科和研究生学位的已批准共享课程。但是,通过已批准的加速课程声明表进入加速课程并不构成申请或被研究生课程录取。进入研究生课程需要一个单独的步骤,即通过正式申请硕士课程,该申请最迟在获得学士学位毕业前一个学期通过研究生招生办公室提交,即在高年级秋季学期结束前提交。为了在获得学士学位后继续攻读硕士学位,加速学生必须遵循 VCU 公告中概述的研究生学习录取要求。所有学生进入该课程均免除 GRE 考试。
•诊断技术:将探索仪器和测定开发,生物医学工程和诊断性产品开发•诊断科学:将重点介绍生物信息学和生物统计分析的潜在生物信息学分析,监管系统,临床试验设计,临床试验系统以及技术背后的技术,诊断,分子和免疫学的公立和私人保健平台•护理,包括伴侣诊断•诊断的应用:将通过有关与诊断相关的关键问题的案例研究进行教授。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。