摘要。葡萄糖酶是一种糖酵解酶,可在糖酵解途径的第一步中催化葡萄糖磷酸化为葡萄糖-6-院子的磷酸化。它还通过催化葡萄糖的磷酸化来调节胰腺β细胞中胰岛素分泌的阈值,并作为葡萄糖传感器起重要作用。葡萄糖酶基因(GCK)中的致病变异引起非促进但持续的轻度禁食性高血糖,也被认为是年轻2的成熟 - 糖尿病(MODY2)。本报告介绍了两个日本兄弟姐妹的Mody2,他们最初被诊断出在20至17岁时被诊断出患有葡萄糖不耐症,后来患有糖尿病。他们没有肥胖史,对胰岛相关的自身抗体为阴性,其血清C肽水平在正常范围内。糖尿病并发症。下一代测序揭示了GCK中的一种新型杂合变体(NM_000162.5:c.1088a> g,p.asp363gly)。此变体以前尚未报道。在使用SIFT和MUTATIONTASTER的计算机功能分析中,表明该变体正在损害。确认突变GCK的功能影响,在HEK293T细胞中暂时表达了hibit标记的p.asp363gly变体和野生型GCK。与表达野生型GCK的细胞相比,表达变体GCK的细胞表现出79%的生物发光,这表明该变体的病理生理学是单倍弥补的结果。
Stigmatoteuthis Arcturi Robson,1948年,属于家庭组织植物科,1880年至1881年,被称为珠宝鱿鱼,这是濒临灭绝的巨型巨型牛奶中最重要的组成部分之一,例如精子Whales(Clarke,Clarke,2006年)。珠宝的鱿鱼的特征是独特的形态,其皮肤上有许多摄影作品,以破坏其阴影并从深水中欺骗掠食者。他们的体内也具有高水平的不对称性,其眼睛的大小,形态和色素沉着较大,其本身是专门针对不同任务的(Thomas等,2017)。虽然较大的左眼看着从表面发出的昏暗的光线以发现其大型捕食者,但较小的右眼向底部看,寻找其Micronekton猎物的生物发光。s. arcturi是1900年的柱头stigmatoteuthis pfeffer属的三种同种异体物种之一,其特征在于男性生殖系统的重复末端部分,并且它们之间存在细微的形态差异,仅在成熟的男性中才能识别出来(Young&Vecchione,2016年)。它在热带和亚热带大西洋近海水域中分布,与任何其他头足类动物一样,Arcturi S. Arcturi迅速生长,这是由于非常激烈的掠夺性活动所增强。珠宝的鱿鱼是寄生虫的寄生虫的寄生虫宿主,例如Anysakis Dujardin,1845年和其他线虫(Palomba等,2021)。他们将这些寄生虫转移到较高的营养水平的宿主中,例如商业上重要的剑鱼和濒临灭绝的齿鲸,这些寄生虫结束了他们的生命周期。
摘要:Arc/Arg3.1(活性调节细胞骨架相关蛋白(ARC))是长期突触可塑性的关键调节器,并参与精神分裂症的病理生理。人类 ARC 作用的功能和机制尚不清楚,值得进一步研究。为了在体外研究 ARC 基因的功能,我们通过 CRISPR/Cas9 介导的基因编辑生成了 ARC 敲除 (KO) HEK293 细胞系,并进行了 RNA 测序和非标记 LC-MS/MS 分析,以识别同源 ARC -KO HEK293 细胞中差异表达的基因和蛋白质。此外,我们使用生物发光共振能量转移 (BRET) 分析来检测 ARC 蛋白与差异表达蛋白之间的相互作用。ARC 的基因缺失会扰乱参与细胞外基质和突触膜的多个基因。发现 ARC -KO 细胞和 ARC 野生型细胞之间存在 7 种蛋白质(HSPA1A、ENO1、VCP、HMGCS1、ALDH1B1、FSCN1 和 HINT2)的差异表达。BRET 测定结果表明 ARC 与 PSD95 和 HSPA1A 相互作用。总体而言,我们发现 ARC 调节涉及细胞外基质、突触膜和热休克蛋白家族的基因的差异表达。本文介绍的 ARC -KO HEK293 细胞的转录组和蛋白质组学谱为 ARC 作用的潜在机制和涉及精神分裂症病理生理的分子通路提供了新的证据。
靶向前列腺特异性膜抗原(PSMA)的放射性核素治疗是转移性cast割的疾病癌的有前途的选择。使用177 lu或225 AC的临床经验具有令人鼓舞的治疗反应;但是,响应不耐用。双同位素组合或“串联”方法可以提高耐受性,同时保持高肿瘤剂量。在这项研究中,我们直接比较了疾病的不同阶段的A-与B粒子治疗以及其组合,在鼠类散布的前列腺癌模型中。方法:首先,要确定177 lu-和225 AC-PSMA-617的可比注射活性,在治疗C4-2皮下肿瘤后的5个时刻进行了离体生物分布研究 - 带有NSG小鼠。为转移性前列腺癌的更具代表性的模型,NSG小鼠在左心室中用表达荧光素酶的C4-2细胞接种了NSG小鼠,从而导致了分布的内脏和骨骼病变。接种后3或5周,单独或组合使用等效肿瘤剂量 - 沉积177 Lu-或225 AC-PSMA-617的活性(35 MBQ为177 LU,40 KBQ,225 AC的40 KBQ,或177 Lu 1 20 KBQ 225 kbq 225 AC; 10/Group; 10/Group; 10/Group)。通过每周生物发光成像评估疾病负担。 使用全身肿瘤负担和总体存活率评估了治疗效率。 结果:离体生物分布研究表明,皮下C4-2模型中的35 MBQ为177 LU和40 kBQ,为225 AC产量的吸收性肿瘤剂量。通过每周生物发光成像评估疾病负担。使用全身肿瘤负担和总体存活率评估了治疗效率。结果:离体生物分布研究表明,皮下C4-2模型中的35 MBQ为177 LU和40 kBQ,为225 AC产量的吸收性肿瘤剂量。接种(177 LU的微观疾病)在3周治疗的小鼠的疾病负担与未治疗的小鼠的疾病没有显着差异。但是,225个AC-PSMA-617都是单一药物,并与177 Lu(177 MBQ的177 Lu 1 20 kBQ 225 ac)相关联,全身肿瘤的增长延迟和生存率显着,无效的是17.4 WK,14.4 wk and 14.3 WK,14.3 WK,15.3 WK,14.3 WK串联疗法)。在接种后5周(宏观疾病)进行治疗时,所有治疗组均显示肿瘤的生长和生存率提高,仅225 AC和给药之间没有显着差异,而在177 LU中伴有225 AC活性的一半是177 LU的225个AC活性(整体存活率为7.9 wk,用于1.3 wk for 177 Lu,14.6 wk,14.6 Wk,14.6 Wk,wk,14.6 Wk,wk,wk wk,wk wk,wk wk and 225 wk,wk wk and 225 wk wk wk and 225 wk。 治疗)。结论:与177 LU相比,同时使用225 AC-和177 LU-PSMA-617的前列腺癌模型的处理显着降低了肿瘤的生长,这显着降低了,这是对
背景。人类诱导的多能干细胞(HIPSC)衍生的胰岛类器官的移植是一种有前途的1型糖尿病(T1D)的细胞替代疗法。重要的是要通过识别具有高血管化和足够容纳的新移植部位来提高胰岛类器官移植的疗效,以支持具有高氧递送能力的移植物存活。方法。产生了人类诱导的多能干细胞系(HIPSCS-L1),以构成表达荧光素酶。表达荧光素酶的hipscs被分化为胰岛类器官。将胰岛类器官移植到非肥胖糖尿病/严重的合并免疫缺陷疾病(NOD/SCID)小鼠的肩cap骨脂肪组织(BAT)中,作为蝙蝠组,在NOD/SCID小鼠的左肾胶囊(KC)下,作为对照组,作为对照组,分别为tivers-tivers-tivers-tivers-tivers-tivers-tivers-tivers-tivers-tivers-tivers-tivers-tivers-tivers-tivers-tiver。在第1、7、14、28、35、42、49、56和63后移植后,进行了类器官移植物的生物发光成像(BLI)。结果。BLI信号,包括BAT和对照组。BAT和KC组的BLI信号逐渐降低。然而,左KC下的移植BLI信号强度大大降低的速度要快得多。此外,我们的数据表明,将移植到链蛋白酶诱导的糖尿病小鼠中的胰岛器官恢复了正常血糖。正电子发射断层扫描/MRI验证了胰岛类器官是否在这些糖尿病小鼠的预期位置移植。结论。免疫荧光染色显示出胰岛素和胰高血糖素染色所证实的功能类器官移植物的存在。我们的结果表明,BAT是T1D治疗的胰岛类器官移植的潜在理想部位。
摘要 创伤性脑损伤 (TBI) 是一种毁灭性的事件,目前治疗方法有限。干细胞移植可通过不同的机制恢复功能,例如通过分化进行细胞替换、刺激血管生成和支持微环境。成人毛囊凸起衍生干细胞 (HFBSC) 具有神经元分化能力,易于采集且相对免疫特权,这使它们成为自体干细胞治疗的潜在候选者。在本研究中,我们应用体内多模态、光学和磁共振成像技术来研究小鼠 TBI 模型中小鼠 HFBSC 的行为。HFBSC 表达 Luc2 和 copGFP,并在体外检查其分化能力。随后,在受伤 2 天后,将预装了 ferumoxytol 的转导 HFBSC 移植到裸鼠的 TBI 病变(皮质区域)旁边。移植后 58 天将大脑固定以进行免疫组织化学检测。表达 Luc2 和 copGFP、载有 ferumoxytol 的 HFBSC 在体外表现出足够的神经元分化潜能。受损大脑的生物发光显示 HFBSC 存活,磁共振成像确定了它们在移植区域的定位。免疫组织化学显示移植细胞染色为巢蛋白和神经丝蛋白 (NF-Pan)。细胞还表达层粘连蛋白和纤连蛋白,但未检测到细胞外基质团块。58 天后,可以在脑组织切片中的 HFBSC 中检测到 ferumoxytol。这些结果表明 HFBSC 能够在脑移植后存活,并表明细胞可能向神经元细胞谱系分化,这支持了它们在 TBI 细胞治疗中的潜在用途。
简介:在过去的几十年中,人类脐带衍生的间充质干细胞(HUC-MSC)由于其免疫调节特性引起了对细胞疗法的兴趣。尽管如此,体内HUC-MSC的命运仍然知之甚少。这项研究旨在研究健康BALB/C小鼠模型中系统给予的HUC-MSC的生物分布,归巢和清除。方法:用GFP-LUC2蛋白标记HUC-MSC,然后用流量细胞仪进行表征。在静脉注射转导的HUC-MSC中,通过生物发光成像(BLI)方法对细胞进行动态监测。结果:用GFP-LUC2转导HUC-MSC不仅保留了MSC的特征,而且还允许在小鼠模型中对转导细胞进行实时监测。在全身给药后,BLI表明,在健康的BALB/C小鼠的肺中主要局部局部转导HUC-MSC,并且主要在肺中保留长达3天,然后最终从体内清除。在末端牺牲处,血浆化学生物标志物保持不变,除了C肽水平,在HUC-MSC组中显着降低了。组织病理学发现进一步表明,HUC-MSCS输注不会引起对肺,肝脏和心脏组织的任何不良反应和毒性。结论:总体,系统地管理的HUC-MSC是安全的,并且在最终从身体中消失之前被证明了动态的归巢能力。©2024,日本再生医学学会。Elsevier B.V.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
1.Afia Abdi β-arrestin 偏向神经降压素受体 1 调节剂对多巴胺受体 D2 β-arrestin 的影响 招募顾问:Lauren Slosky 赞助计划:LSSURP 所在机构:明尼苏达大学,双子城 摘要:由于精神兴奋剂使用障碍对公共健康的影响不断升级,开发有效的药物疗法仍然是一个关键的未满足需求。神经降压素受体 1 (NTSR1) 是一种 G 蛋白偶联受体 (GPCR),在调节大脑中的多巴胺能信号通路方面不可或缺,使其成为这些疾病的有希望的治疗靶点。作为 GPCR,NTSR1 介导与 G 蛋白和 β-arrestin 的相互作用。针对 NTSR1 的平衡肽激动剂已在临床前成瘾模型中显示出潜在功效。尽管如此,它们在临床应用方面的进展受到诸如低血压、体温过低和运动障碍等不利靶向效应的阻碍。因此,我们最近开发了 β-arrestin 偏向的 NTSR1 配体,例如化合物 SBI-553,它选择性地减弱与甲基苯丙胺和可卡因诱导的运动活动相关的精神兴奋剂相关行为。尽管有这些有希望的发现,但其作用的潜在机制仍未完全了解。该项目旨在确定 NTSR1 共表达和激活对 D2 受体信号传导的影响,以阐明 SBI-553 消除靶向副作用的机制。利用 HEK293T 细胞、磷酸钙转染和生物发光共振能量转移 (BRET) 检测,我们希望帮助确定 SBI-553 最大限度减少不良反应的分子机制。这项研究可以为开发更有效、更安全的精神兴奋剂使用障碍药物疗法铺平道路。
几个世纪以来,摄影师一直致力于以高速捕捉瞬时场景,这可以追溯到 1878 年迈布里奇拍摄的马匹运动照片和 1887 年马赫拍摄的超音速子弹。然而,直到 20 世纪末,超高速成像(>10 万)才取得突破。特别是,电荷耦合器件 (CCD) 和互补金属氧化物半导体 (CMOS) 等电子成像传感器的引入彻底改变了高速摄影,使采集率高达数百万 fps。尽管这些传感器影响深远,但使用 CCD 或 CMOS 进一步提高帧速率从根本上受到其片上存储和电子读出速度的限制。在这里,我们展示了一种二维 (2D) 动态成像技术,即压缩超快摄影 (CUP),它可以以高达 1000 亿 fps 的速度捕捉非重复的时间演变事件。与现有的超快成像技术相比,CUP 的显著优势在于只需一次相机快照即可测量 x、y、t(x、y 为空间坐标;t 为时间)场景,从而可以观察在几十皮秒的时间尺度上发生的瞬态事件。此外,与传统摄影类似,CUP 是仅接收的,避免了其他单次超快成像仪所需的专门主动照明。因此,CUP 可以对各种发光物体(如荧光或生物发光物体)进行成像。使用 CUP,我们仅用单次激光发射就能可视化四种基本物理现象:激光脉冲反射、折射、两种介质中的光子竞速以及非信息的超光速传播。鉴于 CUP 的能力,我们预计它将在基础科学和应用科学(包括生物医学研究)中得到广泛应用。
静脉窦。注射后一天,荧光素酶信号只能在肺中检测到,仅在N/P比> 3中检测到(图1B)。在6、8和10(分别为6.4 x 10 4,5.0 x 10 4和3.9 x 10 4光子/s)的N/P比时,肺中的荧光素酶表达水平相似(图1B)。,解剖了包括肺在内的不同器官,并分析器官提取物以表达荧光素酶表达。用发光仪测量荧光素酶信号,并表示为每毫克蛋白质的相对光单位(RLU)。如图1c所示,在整个动物中的生物发光成像与肺提取物中的荧光素酶测定之间观察到了良好的相关性。然而,在器官提取物上进行的荧光素酶测定能够检测到整个动物成像未检测到的荧光素酶表达水平较低。如图1D所示,在器官解剖和均匀化后,使用荧光素酶测定法在脾,肝,肾脏和心脏提取物中确定荧光素酶表达。在脾脏,肾脏和心脏中,8和10的N/P比似乎给出的荧光素酶表达更高,而N/P比6。在肝脏中,8的N/P略优于其他N/P比。因此,应将DNA与体内 - JETPEI®比率和注射条件应适应靶向器官。共同表明,IVIS100成像系统能够检测到99%的发射荧光素酶信号,而其余的1%可以通过在器官提取物上执行的荧光素酶测定法确定。