评论提供了酯前药的方法,应用程序和方法的概述。酯前药是其原始形式的药理学非活性化合物,但在体内生物转化方面成为活性药物,该药物具有与活性药物的溶解度,稳定性和靶向递送有关的优势。在这篇评论中已经审查了酯前药的几种方法,包括简单的酯前药,氨基酸酯前药,糖酯前药,脂质酯前药和聚合物酯前药。本综述纳入了体外和体内方法,以及酯前药物,细胞培养系统,酶测定和动物模型的物理和化学特性的表征 - 这些都非常重要,这些都非常重要,即评估酯的稳定性,生物利用性和效果。使用酯前药的益处很大,但也存在缺点,例如不稳定性,较差或可变的酶水解以及释放的促进性或副产品的毒性。本综述讨论了有关各种局限性的解决方案,包括通过电离宣传活动增强稳定性以及使用基于生理的药代动力学建模。该评论还强调了酯前药在神经系统疾病(例如帕金森氏病)中的应用,以及解决治疗疗效的关键局限性的持续努力。未来的前药策略有望通过利用各种血脑屏障的多种运输机制并整合纳米技术来显着提高。关键字
第 1 卷 21 CFR 第 11 部分回顾 / 1 吸收促进剂 / 13 药物吸收 / 19 固体表面吸附:制药应用 / 34 药物不良反应 / 46 处方药和非处方药产品的广告和促销 / 57 替代药物 / 66 无定形制药系统 / 83 分析程序:验证 / 92 药物开发中的动物 / 114 无菌处理:验证 / 127 自氧化和抗氧化剂 / 139 生物可吸收聚合物 / 155 药物的生物利用度和生物等效性 / 164 可生物降解聚合物作为药物载体 / 176 生物液体:分析 / 194 生物药剂学 / 208 药物的生物合成 / 228 生物技术和生物制剂 / 258生物技术衍生的药物产品:配方开发 / 281 生物技术衍生的药物产品:稳定性测试、灌装和包装 / 302 药物的生物转化 / 310 蒸汽灭菌的生物验证 / 325 血液替代品:氟碳方法 / 335 血液替代品:基于血红蛋白的氧载体 / 353 吹灌封:高级无菌处理 / 378 缓冲剂、缓冲剂和离子平衡 / 385 药物研发中的量热法 / 393 硬胶囊 / 406 软胶囊 / 419 致癌性测试:过去、现在和未来 / 431 手性分析方法 / 445 色谱分析方法:气相色谱法 / 463 色谱分析方法:高效液相色谱法
第 1 卷 21 CFR 第 11 部分回顾 / 1 吸收促进剂 / 13 药物吸收 / 19 固体表面吸附:制药应用 / 34 药物不良反应 / 46 处方药和非处方药产品的广告和促销 / 57 替代药物 / 66 无定形制药系统 / 83 分析程序:验证 / 92 药物开发中的动物 / 114 无菌处理:验证 / 127 自氧化和抗氧化剂 / 139 生物可吸收聚合物 / 155 药物的生物利用度和生物等效性 / 164 可生物降解聚合物作为药物载体 / 176 生物液体:分析 / 194 生物药剂学 / 208 药物的生物合成 / 228 生物技术和生物制剂 / 258生物技术衍生的药物产品:配方开发 / 281 生物技术衍生的药物产品:稳定性测试、灌装和包装 / 302 药物的生物转化 / 310 蒸汽灭菌的生物验证 / 325 血液替代品:氟碳方法 / 335 血液替代品:基于血红蛋白的氧载体 / 353 吹灌封:高级无菌处理 / 378 缓冲剂、缓冲剂和离子平衡 / 385 药物研发中的量热法 / 393 硬胶囊 / 406 软胶囊 / 419 致癌性测试:过去、现在和未来 / 431 手性分析方法 / 445 色谱分析方法:气相色谱法 / 463 色谱分析方法:高效液相色谱法
在丘陵地区进行了广泛的研究,研究了植物际微生物组和根际以及居住在恶劣环境条件的微生物多样性。艰难的地形,不良的基础设施和脆弱的生态系统,其特征是山丘农业生态系统。因此,确定确定生物多样性的精确过程变得极为挑战。植物 - 微生物相互作用可以解释为什么植物能够生存。植物 - 微生物相互作用可能是植物适应方法生存的因素。因此,植物 - 微生物相互作用非常有价值,因为它们实际上是所有生物转化的责任,以及氮,碳和其他营养素的一致和平衡来源的产生,这些来源有助于随后植物群落的增长。结果,它有助于营养获得和积累。这些植物 - 微生物相互作用也有助于生物修复和土地恢复。因此,土壤形成和养分输入的第一个过程取决于植物 - 微生物相互作用的活性。那些可以忍受较高高度气候的细菌对于植物发育至关重要。为了在恶劣的环境环境中生存,微生物在各种环境中演变出来。因此,发现强大的微生物和使它们在极端温度环境中生活的机制至关重要。后来,农民可以在现场实验中应用类似的想法,以在世界上最冷和最严厉的地区进行长期农业生产。本文包括对潜在的植物 - 微生物相互作用以及居住在丘陵地点的植物和微生物生物多样性采用的自适应方法的简要检查。
生物质来源在地理上分散,季节性变化会影响其可用性。位置、类型和原料质量的变化带来了物流和储存挑战。生物质来源的这种分散和多样性以及需求点的分散可能会破坏规模经济并增加供应短缺的风险。通过将生物质预处理和分销活动整合到生物枢纽设施中,它们可以促进生物质供应链 (BSC) 的整体弹性,并确保更可持续和更具成本效益的生物能源生产方法。因此,研究与生物枢纽实施相关的优势和挑战可以为 BSC 的效率和可持续性提供宝贵的见解。尽管 BSC 发挥着至关重要的作用,但有关 BSC 的大部分文献仅限于与生物质供应商和生物转化设施相关的决策过程。为了弥补这一研究空白,本研究对过去十年间 BSC 内生物枢纽实施进行了系统的文献综述。入围论文经过细致分类和分析,从 BSC 和建模角度提取可能的改进。从 BSC 的角度来看,一个明显的差距是很少关注生物中心运营的中期和短期决策,例如库存控制、资源管理和生产计划。此外,结果显示,生物中心实施的环境和社会方面需要大量关注。从建模的角度来看,研究结果表明,在决策过程中未充分利用综合方法将微观和宏观信息纳入其中。在这方面,建议进一步探索一些领域。
生成生物燃料。但是,由于木质纤维素生物量的缓慢降解,生物转化过程的效率并不总是令人满意的。一种有趣的方法是使用具有高木质纤维素降解能力的微生物群落来进行环保预处理。这项研究的重点是表征细菌,真菌和酵母菌菌株的降解性能,并设计和构建不同的微生物财团,用于固态治疗小麦麸皮和小麦稻草。微生物群体,即BFY4和BFY5,含有不同的细菌,真菌和酵母,导致糖积累的比率高于3.21到3.5,降解率超过33%的糖含量超过了33%,因此在整个过程中降低了较高的水解酶活性和改善的降低糖产量。在72 h后,在由BFY4和BFY5预处理的小麦稻草预处理中也检测到最高的FPase(0.213 IU/GDS)和木聚糖酶(7.588 IU/GDS)活性,而CMCASE活动峰值(0.928 IU/GES)(0.928 IU/GDS)(0.928 iu/g.ds)时使用了小麦麸皮。当两种底物以相同比率使用时,在处理过程中释放的葡萄糖量增加。我们的结果表明,底物组成在混合培养物的降解能力中也起着重要作用。这些发现可能有助于促进在试点量表上应用此类生物过程所需的主要知识。。
摘要:多氯联苯(PCB)引起重大健康和生态障碍,是持续的有机污染物,但仍在世界各地恢复。微生物PCB生物转化是一种用于污染的有前途的技术,但所涉及的分子机制仍然被误解。木质氨基利因酶被怀疑参与许多PCB转化,但它们的评估仍然很少。为了进一步清单微生物通过其木氨基利性酶转化PCB的能力,我们研究了氧化酶和过氧化物酶在从历史悠久的PCB污染位点分离的一组微生物中的作用。Among 29 isolated fungi and 17 bacteria, this work reports for the first time the PCB-transforming capabilities from fungi affiliated to Didymella , Dothiora , Ilyonectria , Naganishia , Rhodoturula , Solicoccozyma , Thelebolus and Truncatella genera and bacteria affiliated to Peribacillus frigotolerans ,壁画peribacillus,macillus mycoides,蜡状芽孢杆菌,丰尼芽孢杆菌,伪刺杆菌,假单胞菌冠状动脉法,埃尔维尼亚蚜虫和se肉杆菌静脉。以相同的方式,这是对Dothiora maculans Specie和cladosporium属的真菌分离株的第一份报告,分别显示了氧化酶(推定的漆酶)和过氧化物酶活性,在PCBS的存在下(分别超过4倍和20圈),可增强。基于这些结果,怀疑观察到的活动参与PCB转换。
目的:人类肠道真菌群由多种真菌物种组成,尽管与细菌种群相比数量相对较少,但其在健康和疾病中发挥着至关重要的作用。本综述概述了真菌群的组成、发育模式和各种病理条件下的菌群失调。此外,还讨论了肠道微生物群内真菌群落的复杂相互作用。当前内容:肠道真菌群的发展遵循与细菌微生物群相似的模式,出生方式、饮食和年龄是关键决定因素。与细菌趋势相反,真菌群多样性在儿童和老年时期增加。最近的研究表明,不同种族群体的真菌群组成存在差异。真菌群失调与自身免疫、胃肠道和心血管疾病有关。某些真菌,尤其是白色念珠菌,在病理状态下相对更丰富。真菌代谢活动,特别是次级代谢产物的产生,可显著影响疾病进展。肠道微生物群中的细菌-真菌相互作用很复杂,受饮食和抗生素使用等环境因素的调节。此外,肠道真菌群调节治疗效果。肠道真菌通过生物转化增强天然产物化合物的生物活性,包括其抗癌和抗炎作用。这表明肠道真菌群具有优化天然产物治疗效果的潜力。结论:本综述强调了肠道真菌群作为诊断生物标志物和治疗靶点的相关性。未来的研究应侧重于阐明真菌群变化与疾病状态之间的因果关系,并进一步探索肠道生态系统中的细菌-真菌相互作用。
摘要的目的是报告使用大麻二酚(CBD)在治疗焦虑症中的有效性,因为人类神经成像研究表明,其作用发生在与焦虑有关的Lybic大脑区域。进行了分析,用于了解其焦虑症患者的机制的不受控制的剂量和量。这是一项综合评论,并在以下平台中收集文章:拉丁美洲和加勒比健康科学文学(淡紫色)和美国国家医学图书馆(PubMed)。维持主题并证实了文章的使用“大麻二酚”,“大麻二酚”,“治疗”,“焦虑症”,“焦虑症”和“ CBD”。“治疗”。作为纳入标准:在过去的05年中发表的文章,自由访问和作为排除疗法研究的标准与四氢可纳比尼醇(THC)和动物分析相结合。在具有良好安全性的焦虑治疗中观察到大麻二醇的治疗潜力;在促进恐惧灭绝和减少恐惧行为的灭绝方面的作用;与最近的研究相反,除了没有四氢可纳曲奈醇生物转化(THC)的口服CBD以外。得出的结论是,除了减少氧化应激之外,大麻二醇还充当炎症过程的调节剂,与焦虑症的常规治疗相比,它是一种有害的替代方案,但在焦虑症治疗中的使用仍然需要更加谨慎的方法进行更多的研究。关键字:大麻二酚;焦虑症;治疗。
向日葵 ( Helianthus annuus L.) 是世界上最重要的油料作物之一,用途广泛 (Hu 等,2010)。根据脂肪酸组成,向日葵可分为高油酸 (85%)、中油酸 (60-65%) 和亚油酸 (低油酸)。世界对高油酸向日葵的生产和消费需求不断增加,因为高油酸向日葵基因型在工业用途和人类健康方面具有各种优势 (Kaya 等,2007)。向日葵的油组成可以通过对脂肪酸去饱和酶 2 ( FAD2 ) 基因进行遗传修饰来改变,这种修饰促进油酸到亚油酸的生物转化。使用化学诱变剂二甲基亚砜 (DMSO) 可将 Pervenets 向日葵品种的油酸组成提高至 75%(Soldatov 等人,1976 年)。许多衍生自突变体 Pervenets 的自交系的油酸组成高达 90%(Fernandez-Martinez 等人,1993 年;Miller 等人,1987 年;Zambelli 等人,2015 年)。此外,Vick & Miller(1996 年)报道了通过使用乙基甲烷磺酸盐 (EMS) 处理来开发高油酸和中油酸向日葵突变体。同样,Leon 等人(2013b)也进行了 EMS 处理以开发高油酸突变体。该处理诱导了点突变,导致氨基酸替换和过早终止密码子(Leon 等人,2013b)。另一方面,FAD2-1基因的重复导致基因转录沉默,从而导致油酸的积累(Lacombe等,2009;Martinez-Rivas等,2001)。此外,Schuppert等(2006)也报道了高油酸突变体向日葵是通过FAD2-1基因的重复和向日葵基因型中油酰磷脂酰胆碱去饱和酶的诱导而产生的。