发酵食品是一门艺术,在全球范围内提供各种发酵食品。每个国家或地区都有其自身类型的发酵食品,该食品基于当地人口的主食和原材料的可用性。如今,发酵食品已成为国家文化传统的一部分。例如是在印度准备和消费的,被认为是印度神话的一部分。发酵食品是由牛奶,蔬菜,水果,谷物,豆类,肉类和鱼类等各种原材料制备的。发酵食品制备的生产过程从早期文明演变到现在,也将继续。根据随着时间的推移获得的可用科学证据和专业知识,他们的流程被标准化用于商业生产。这些是通过微生物活性从不同来源的原材料生物转化产生的。与原材料相比,所得产品在质地,风味,稳定性和营养价值上有所不同。大多数发酵过程都是通过乳酸发酵进行的,其中天然菌群利用糖和淀粉的原材料以及产生有价值的酶,维生素(B-Vitamins),omega-3脂肪酸等。乳酸是产品中的天然防腐剂,因此除了有益作用外,还延长了保质期。在这里,非常重要的是要注意,发酵食品的质量取决于以下因素(图3.1):
抽象的有氧γ-细菌甲烷嗜酸菌(GMOB)是控制淡水生态系统中甲烷 - 氧化界面的关键生物。在低氧环境下,GMOB可能将其有氧代谢转移到发酵中,从而导致细胞外有机酸的产生。我们最近分离了代表甲基杆菌属的GMOB菌株。北方湖水柱的 s3l5c)并证明它在低氧条件下将甲烷转化为有机酸(乙酸盐,甲酸盐,苹果酸和丙酸)。 对分离株基因组中有机酸产生的推定基因的注释以及代表甲基杆菌属的环境元基因组组装基因组(MAGS)。 表明,甲烷转化为有机酸的潜力在甲基杆菌属中广泛发现。 淡水生态系统。 但是,尚不清楚将甲烷转化为有机酸的能力是否仅限于甲基杆菌属。 或普遍存在的其他淡水GMOB属。 因此,我们从北方湖水柱中分离了两个额外的GMOB属的代表,即甲基瘤paludis s2am和甲基伏洛伏氏菌精神分裂症S1L,以及类似的生物转化能力。 这些属可以将甲烷转化为有机酸,包括醋酸盐,甲酸盐,琥珀酸酯和苹果酸。 另外,S2AM产生了乳酸。 此外,我们检测到编码其基因组中的有机酸产生的基因和代表甲基瘤属的MAG中。 和甲基化属。s3l5c)并证明它在低氧条件下将甲烷转化为有机酸(乙酸盐,甲酸盐,苹果酸和丙酸)。对分离株基因组中有机酸产生的推定基因的注释以及代表甲基杆菌属的环境元基因组组装基因组(MAGS)。表明,甲烷转化为有机酸的潜力在甲基杆菌属中广泛发现。淡水生态系统。但是,尚不清楚将甲烷转化为有机酸的能力是否仅限于甲基杆菌属。或普遍存在的其他淡水GMOB属。因此,我们从北方湖水柱中分离了两个额外的GMOB属的代表,即甲基瘤paludis s2am和甲基伏洛伏氏菌精神分裂症S1L,以及类似的生物转化能力。这些属可以将甲烷转化为有机酸,包括醋酸盐,甲酸盐,琥珀酸酯和苹果酸。另外,S2AM产生了乳酸。此外,我们检测到编码其基因组中的有机酸产生的基因和代表甲基瘤属的MAG中。和甲基化属。湖泊和池塘生态系统。总的来说,我们的结果表明,甲烷转化为各种有机酸是湖泊和池塘GMOB之间广泛发现的性状,突出了它们作为甲烷碳的关键介质的作用,以供淡水湖和池塘生态系统的微生物食品网。
发酵食品是一门艺术,在全球范围内提供各种发酵食品。每个国家或地区都有其自身类型的发酵食品,该食品基于当地人口的主食和原材料的可用性。如今,发酵食品已成为国家文化传统的一部分。例如是在印度准备和消费的,被认为是印度神话的一部分。发酵食品是由牛奶,蔬菜,水果,谷物,豆类,肉类和鱼类等各种原材料制备的。发酵食品制备的生产过程从早期文明演变到现在,也将继续。根据随着时间的推移获得的可用科学证据和专业知识,他们的流程被标准化用于商业生产。这些是通过微生物活性从不同来源的原材料生物转化产生的。与原材料相比,所得产品在质地,风味,稳定性和营养价值上有所不同。大多数发酵过程都是通过乳酸发酵进行的,其中天然菌群利用糖和淀粉的原材料以及产生有价值的酶,维生素(B-Vitamins),omega-3脂肪酸等。乳酸是产品中的天然防腐剂,因此除了有益作用外,还延长了保质期。在这里,非常重要的是要注意,发酵食品的质量取决于以下因素(图3.1):
抗生素是最常开处方的药物,已广泛用于预防或治愈人类和兽医疾病,无疑导致大量释放到下水道网络和废水处理系统中,这是一种热点,其中抗生素转化的发生和转化。细胞外聚合物物质(EPS),通过微生物活性分泌的生物聚合物,在细胞粘附,养分保留和毒性耐药性中起重要作用。然而,与抗生素的耐药性和去除相关的污泥EP的潜在作用尚不清楚。这项工作总结了最先进的微生物EPS的组成和物理化学特征,突出了EPS在去除抗生素中的关键作用,评估其在不同的抗生素暴露下的防御性能,并分析可能影响抗抗生素的吸附和生物转化行为的典型因素。接下来,分析了微生物EPS与抗生素抗性基因之间的相互作用。未来的观点,尤其是微生物EPS在抗生素毒性检测和防御方面的工程应用也受到了强调。©2022作者。由Elsevier B.V.代表中国环境科学研究所,中国环境科学学院出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
葡萄枝是一种富含碳水化合物的农业废弃物,可被视为一种有前途的能源替代品。这项研究的目的是提出一种利用这种残留生物质的工艺策略,包括将可溶性糖化学转化为糠醛,将纤维素葡萄糖生物转化为 H 2 。对葡萄枝进行蒸汽爆破预处理,其操作条件优化为 190 ◦ C 和 1.6% H 2 SO 4 浸渍生物质。这些预处理条件允许在预水解物中回收 68.2% 的半纤维素糖和 18.2% 的葡萄糖,并通过酶水解回收 45.3% 的葡萄糖。因此,在优化条件下获得的预处理固体进行酶水解,生成的浆液被丁酸梭菌用作底物,发酵成生物氢(830.7 mL/L,每100 g生葡萄枝产量为3550 mL)和有机酸(1495.3 mg乙酸/L和1726.8 mg丁酸/L)。以糠醛生产为基础,在202 ◦ C的微波反应器中优化预水解物中木糖的化学转化,使用0.195 M FeCl 3作为催化剂,糠醛产量为15 g/L,产率为73%。
CYP1A1同工酶负责将procarcinogen的生物转化,例如苯并(a)pyrene,纳入反应性化合物。同时,GSTM1通过与谷胱甘肽结合来促进这些代谢产物的排毒。CYP1A1*2A遗传变异的存在加强了这些反应性代谢物的产生,而GSTM1基因的缺失(GSTM1*0)损害了它们的排毒。这种酶促失衡会导致DNA加合物的形成,众所周知,这些加合物会为癌症和其他疾病贡献。鉴于在4P药物框架内研究这些基因的重要性(预测性,预防性,个性化和参与性),这项研究的主要目的是研究秘鲁中部沿海人口中GSTM1*0和CYP1A1*2A的普遍存在。该研究包括秘鲁城镇ICA和利马城镇的131个个人居民。结果显示GSTM1*0的频率为0.47,CYP1A1*2A的等位基因频率为0.68。CYP1A1*2A的基因型频率为6%*1A/*1A,53%*1A/*2A和41%*2a/*2a。值得注意的是,CYP1A1的人口样本不在耐寒的韦恩伯格平衡中(χ2= 5.324)。本研究中报道的GSTM1*0和CYP1A1*2A的频率与先前记录的其他拉丁美洲和三角洲人群的频率不同,可能反映了独特的
膜曝气生物膜反应器 (MABR) 是一种新兴的营养物去除技术;然而,其去除率和氧转移效率之间仍然存在权衡。本研究比较了主流废水氨水平下在连续和间歇曝气模式下运行的硝化流通式 MABR。间歇曝气 MABR 保持最大硝化速率,包括在无曝气期间允许膜气体侧的氧分压大幅下降的条件下。所有反应器的一氧化二氮排放量相当,约占转化氨的 20%。间歇曝气增加了阿替洛尔的转化速率常数,但不影响磺胺甲恶唑的去除。另外七种微量有机化学物质均未被任何反应器生物降解。间歇曝气 MABR 中的氨氧化细菌以亚硝化螺菌为主,此前研究表明,亚硝化螺菌在低氧浓度下数量丰富,可在变化的条件下提供反应器稳定性。我们的研究结果表明,间歇曝气流通式 MABR 可实现高硝化速率和氧转移效率,突出了空气供应中断对一氧化二氮排放和痕量有机化学生物转化的可能影响。
摘要 - 科学的新兴领域之一是微生物学,在日常生活的许多方面,它每天都更有用,包括许多相关的环境和人类主题。微生物学是生物学的基本方面,现在有许多子学科,例如细菌学,真菌学,原生动物学,病毒学,进化微生物学,纳米生物学等。微生物学还具有广泛的应用科学,包括环境微生物学。微生物或看不见的生物在实际发现之前已有许多世纪。他们的生活是由历史上许多重要的科学家(例如Avicenna的Mahavira…自6世纪开始)假设的。今天的生物修复,生物技术,生物遗传学研究对于保护地球,为生态系统提供食物,水和环境而言,对质量寿命有用。这项研究的主要目的是通过案例太阳能研究表明环境微生物学,应用,其趋势和现有情况的重要性。在废水处理厂的污水污泥中分析了阳光化的效果。显示了许多应用程序和高科技示例。今天的研究具有纳米量表技术,例如生物转化,生物降解及其标准,但所有这些领域都源自相同的基本基础。作为结果,基本的微生物学及其原理对于工程至关重要,如今技术必须一起使用并考虑这些科学(生物学,化学,物理和数学),并一起跨学科。
抽象的微型塑料已成为紧迫的环境问题,对生态系统,水体,陆地景观和人类食品来源产生深远的影响。鉴于全球塑料废物危机,正在探索创新的策略来管理和回收塑料废物,重点是微塑料。研究旨在将废物微塑料转变为有价值的资源,与循环经济原则无缝融合。微塑料。微塑料可以在化学和物理上进行组成选择,然后使用生物,化学和机械方法进行转化。生物转化涉及微生物活性和酶利用,化学转化涉及化学转化率将聚合物分解为较小的分子,这些分子可用作有价值材料的原料,而机械转换则适用于物理力来减少聚合物的大小。常规和可生物降解的塑料都可以在一定程度上进行生物学,化学和机械回收,以保持其价值并防止浪费不可再生的资源。然而,在微塑料的转化中存在挑战,包括成本效益,可扩展性,环境友好性和监管考虑因素。适当的宏观管理和生命周期评估分析对于过渡到可持续和循环经济仍然至关重要。关键字:微塑料,转换技术,增值产品
重金属污染由于其持续性,更高的毒性和顽固性而成为全球严重关注的问题。这些有毒的金属威胁着环境的稳定性和所有生物的健康。重金属还通过食用受污染的食物并对人类健康造成有毒作用,进入人类食物链。因此,必须对HMS污染的土壤进行修复,并且需要在更高的优先级上解决。使用微生物被认为是打击HMS不利影响的有前途的方法。微生物有助于恢复恶化环境的自然状况,并具有长期的环境影响。微生物修复可防止HMS的浸出和动员,并且还使HMS的提取变得简单。因此,在这种情况下,最近的技术进步允许将生物修复用作补救污染土壤的必要方法。微生物使用不同的机制,包括生物呼吸,生物蓄积,生物含量,生物转化,生物胆碱化和生物矿化,以减轻HMS的影响。因此,在此评论中,在此综述中保持有毒的HMS探讨细菌,真菌和藻类在污染土壤的生物修复中的作用。本综述还讨论了可用于提高微生物效率以补救HMS污染土壤的各种方法。它还强调了在未来的研究计划中必须解决的不同研究差距,以改善生物修复效率。