加法:可以通过两种不同的选择来证明上述基本土壤管理或监测实践。请注意,依靠Cap/Gaec证明符合艺术是不够的。红色II的29(2)。 选项1:在国家一级,根据管理计划在所有农场中采用农业残留物的管理计划,在原料供应国需要收集农业残留物的所有农场,并监控和强制执行这些实践的实施。 如果管理计划根据国家法律规定土壤管理或根据附件VI进行监测的管理计划,则可以实现该方法。 立法应指的是管理计划或类似的方法,只要该方法确保在土地上应用基本的土壤管理或监测实践以促进土壤碳的隔离和土壤质量。 ,只要他们具有扮演此角色的技术能力,就可以将国家一级合规性的验证委托给认证机构。 ISCC将监督国家一级认证,作为内部监测的一部分。红色II的29(2)。选项1:在国家一级,根据管理计划在所有农场中采用农业残留物的管理计划,在原料供应国需要收集农业残留物的所有农场,并监控和强制执行这些实践的实施。如果管理计划根据国家法律规定土壤管理或根据附件VI进行监测的管理计划,则可以实现该方法。立法应指的是管理计划或类似的方法,只要该方法确保在土地上应用基本的土壤管理或监测实践以促进土壤碳的隔离和土壤质量。,只要他们具有扮演此角色的技术能力,就可以将国家一级合规性的验证委托给认证机构。ISCC将监督国家一级认证,作为内部监测的一部分。
农业残留物焚烧在世界许多地方普遍存在,这引起了重大的环境问题,特别是其对土壤健康的长期影响。这项研究调查了秸秆焚烧对土壤微生物生物量和群落组成的影响,重点关注其对土壤健康和生态系统功能的长期影响。研究强调,反复焚烧会改变微生物多样性,减少固氮细菌和菌根真菌等有益微生物的数量。随着时间的推移,这种破坏会导致土壤肥力下降、养分循环受损,以及抗逆但效率较低的微生物物种增多。研究结果强调,需要采取可持续的农业实践,优先考虑土壤保护,尽量减少秸秆焚烧的不利影响。这项研究提出了切实可行的建议,包括采用无焚烧技术和替代残留物管理实践来恢复和保持土壤微生物健康,确保长期农业生产力。
我们很幸运能够与森林生态系统合作。它们是调节大气CO 2的最终自然气候解决方案,因为它们经过基因编程,可以通过太阳能光合作用积累木质生物量。积极的森林管理对于维持健康的生产森林至关重要,并且可以随着时间的流逝而增加在单个树木和树木架上存储的碳量。在使用森林生态系统时,重要的是不要忽视与CO 2发射相关的大多数气候变化问题是通过燃烧化石燃料的能量而引起的,从而使化石碳释放到大气中。重要的是要研究减少化石碳排放的方法,同时继续为森林生态系统减轻已经居住在大气中的CO 2的不良后果而努力。
响应氮(N)的上述和地下生物量的有效分配对于在亚最佳条件下植物的生产力至关重要。在具有浅根系统的菠菜,短生长周期和氮的使用效率下,尤其是必不可少的。在这项研究中,我们进行了全基因组关联研究(GWAS),以使用具有不同遗传背景的菠菜饰品来探索N诱导的变化。 ,我们评估了表型变化,因为在受控环境下,在Soilless介质中,使用201个菠菜饰品在芽和根生物量的变化中响应N。 使用60,940个全基因组重新定位的SNP,在201菠菜加入中对芽和根生物量的百分比变化进行了GWA。 三个SNP标记,CHR4_28292655,CHR6_1531056和CHR6_379666006染色体4和6上的CHR6_37966006与根重量的变化显着相关,两个SNP标记,ChR2_18480277和CHR2_18480277和CHR4_4_4_4_4_4_7598760上的chromososososososososs 2和4%,以及4%和4%的人2和4; 这项研究的结果为改善总生物量的分配所需的遗传研究基础,并提供了一种资源来识别分子标记物,以通过标记辅助选择或菠菜育种计划中的基因组选择来增强N的吸收。在这项研究中,我们进行了全基因组关联研究(GWAS),以使用具有不同遗传背景的菠菜饰品来探索N诱导的变化。,我们评估了表型变化,因为在受控环境下,在Soilless介质中,使用201个菠菜饰品在芽和根生物量的变化中响应N。使用60,940个全基因组重新定位的SNP,在201菠菜加入中对芽和根生物量的百分比变化进行了GWA。三个SNP标记,CHR4_28292655,CHR6_1531056和CHR6_379666006染色体4和6上的CHR6_37966006与根重量的变化显着相关,两个SNP标记,ChR2_18480277和CHR2_18480277和CHR4_4_4_4_4_4_7598760上的chromososososososososs 2和4%,以及4%和4%的人2和4;这项研究的结果为改善总生物量的分配所需的遗传研究基础,并提供了一种资源来识别分子标记物,以通过标记辅助选择或菠菜育种计划中的基因组选择来增强N的吸收。
Microphytobenthos(MPB)对河口初级生产产生了重大贡献,因此量化其生物量对于评估其生态系统功能至关重要。传统的抽样方法是劳动的,在逻辑上具有挑战性,无法提供MPB生物量的全面空间分布图。卫星图像提供了一种可行的替代方法,用于绘制各种时间和空间分辨率的大面积。但是,在该场中使用了与原位采样的少量平方Centi米一致的空间分辨率的成像设备。这使得将现场生物量测量与远程感知的辐射测量值相关联。在这项研究中,在不同高度的无人机(UAV)上安装了两个类似的多光谱传感器,以及在〜1 m高度上获得图像的定制设备上,以收集guadalquivir estuta(SpataLquivir estuta)mudflats mudflats mpb Biofilms的非常高的空间分辨率反射数据。此外,使用高光谱谱仪获得原位反射率进行验证。同时,使用2 mM深度接触Corer方法收集了MPB样品,该方法通过高性能液相色谱(HPLC)分析,以测量主要MPB颜料的浓度。为了评估MPB色素和不同反射率的光谱指数,使用了广义的线性混合效应模型(GLMM),从而实现了叶绿素与所有测试的光谱指数之间的显着正相关关系。这些模型用于绘制微卵巢生物量,在
生成生物燃料。但是,由于木质纤维素生物量的缓慢降解,生物转化过程的效率并不总是令人满意的。一种有趣的方法是使用具有高木质纤维素降解能力的微生物群落来进行环保预处理。这项研究的重点是表征细菌,真菌和酵母菌菌株的降解性能,并设计和构建不同的微生物财团,用于固态治疗小麦麸皮和小麦稻草。微生物群体,即BFY4和BFY5,含有不同的细菌,真菌和酵母,导致糖积累的比率高于3.21到3.5,降解率超过33%的糖含量超过了33%,因此在整个过程中降低了较高的水解酶活性和改善的降低糖产量。在72 h后,在由BFY4和BFY5预处理的小麦稻草预处理中也检测到最高的FPase(0.213 IU/GDS)和木聚糖酶(7.588 IU/GDS)活性,而CMCASE活动峰值(0.928 IU/GES)(0.928 IU/GDS)(0.928 iu/g.ds)时使用了小麦麸皮。当两种底物以相同比率使用时,在处理过程中释放的葡萄糖量增加。我们的结果表明,底物组成在混合培养物的降解能力中也起着重要作用。这些发现可能有助于促进在试点量表上应用此类生物过程所需的主要知识。。
JGI 使命:提供先进的基因组学能力、大规模数据和专业知识,以支持全球研究界对复杂生物和环境系统的研究。我们通过负责任地管理我们的人员和资源来优化我们对社区的服务。
成功地开发了一条与非海洋可生物降解钓鱼线相同程度的淋巴结伸长率,并展示了海洋生物降解性。钓鱼线在遗弃后沉入海底时会加速。实际上在实际海洋区域的现场测试中确认了钓鱼线的降解性。
木质纤维素生物量是一种复杂的天然聚合物,主要由纤维素,半纤维素,木质素和其他各种化学成分组成。木质纤维素生物量中的纤维素可以分解为称为纳米纤维素的纳米尺寸生物材料,该纳米纤维素具有独特的特征,并在各个领域具有潜在的应用。在材料科学和生物医学工程领域的过去几十年中,木质纤维素生物质的纳米纤维素产生已成为广泛研究的主题,并引起了全球科学家和技术人员的关注。该生产在利用木质纤维素生物量的纤维素以及随后的加工中的纤维素方面面临许多挑战,以转化为纳米纤维素材料及其在科学和技术各个领域的进一步应用。此电流