在过去十年中,出现了一种利用免疫系统对抗肿瘤的癌症治疗新模式。这些免疫疗法的新作用机制也给药物开发带来了新的挑战。生物标志物在免疫疗法早期临床开发的几个领域中发挥着关键作用,包括作用机制的证明、剂量确定和剂量优化、不良反应的缓解和预防以及患者丰富和适应症优先排序。我们讨论了在早期开发研究中建立一组生物标志物的预后、预测方面以及将生物标志物的变化与临床疗效联系起来的统计原理和方法。所讨论的方法旨在避免偏见并得出可靠且可重复的结论。本综述针对对免疫疗法背景下的生物标志物的战略使用和分析感兴趣的药物开发商和数据科学家。
1. 背景 2020 年 5 月 20 日,国家绿色法庭以 2020 年第 72 号 OA 案审理了“Covid-19 治疗产生的生物医疗废物的科学处置——遵守 BMWM 规则 2016”相关事宜。在上述听证会上,法庭与成员秘书进行了交流,并仔细阅读了 CPCB 为“处理、处理和处置 COVID-19 患者治疗/诊断/隔离期间产生的废物”制定的指南。在听证会上,法庭强调需要解决废物处理人员的安全、埋坑监控、个人/公民的担忧以及修订指南的必要性。在其于 2020 年 4 月 20 日发布的临时命令中,尊敬的法庭指出:“……我们认为,在上述范围内,PCB 和 CPCB 的任务是 COVID-19 基本卫生服务的一部分。CPCB 可以将此传达给所有相关人员。”尊敬的法庭在 2020 年 4 月 24 日发布的命令中指示的具体行动要点如下;“9. 似乎需要进一步修订指南,以涵盖所有方面,不仅包括机构,还包括个人家庭,并处理没有焚化炉等科学处置设施的情况,任何缺乏适当保障措施的粗心深埋都会对地下水产生不利影响并对人们的健康和安全构成危险。将 COVID-19 废物作为城市垃圾处理到普通垃圾箱中或在没有保障措施的情况下不科学地处理污水和其他液体废物也可能很危险。除了持续监督和监测、汇编在线数据、使用电子/数字清单系统跟踪和记录来自所有来源的新冠肺炎废物、防止废物意外泄漏、分析数据以进行战略规划和通过开发必要的软件获得反馈之外,还需要根据进一步的经验和不时出现的新想法纳入最佳做法。还需要提高所有处理人员、工人和公民对预防措施和应采取的步骤的认识,制定一个示范计划,由 Panchayat、分区、区和邦当局在当地采用,并根据当地情况进行必要的进一步修改。所有操作人员的健康都得到了保护,预防措施也已采取。除了为地方机构和卫生部门的合规负责人提供足够的防护装备外,还需要通过在线机制对他们进行指导/培训。CPCB 必须发挥带头作用,并与媒体以及有关的中央/邦部门进行协调。让各邦/直辖区的首席秘书通过协调城市发展、卫生、灌溉和公共卫生等邦有关部门的活动,密切监督科学储存、运输、处理、管理和处置 COVID-19 废物,因为不科学的处理对环境和人民健康构成严重威胁。在国家层面,让环境和气候变化部、卫生 UD、水力教育、国防部和 CPCB 组成的高级别工作组按照指南监督 COVID-19 废物的处理和科学处置。让各邦环境部和 PCB/PCC 确保遵守《2016 年生物医学废物管理规则》,并向 CPCB 提交行动报告,CPCB 采取进一步措施,并向本法庭提交截至 2020 年 5 月 31 日已采取的措施和基本情况的综合报告。” 2020 年 4 月 21 日和 2020 年 4 月 24 日命令的副本分别见附件 I 和附件 II。
量子力学的主要特征是不确定性原理、波粒二象性、能量量化和经典概率定律的修正。生物学关注的是自然系统如何运作——从理解遗传编码信息的复制方式,到获得复杂多步反应的机械模型。最近,研究人员一直在问,量子力学(通常是物理学的领域)是否也需要理解一些生物过程。这个领域包括理论和实验方面的有趣发展,以及多学科的讨论,本书记录了最新的进展。埃尔温·薛定谔在他著名的著作《生命是什么?》(薛定谔,1944 年)中指出,量子力学解释了生物及其细胞过程的稳定性,因为我们通过量子力学了解了分子的稳定性和结构。量子效应在化学系统的不同状态之间产生有时很大的能量间隙这一事实也很重要。电子能级之间的这种能隙使生物体能够捕获和存储光子从太阳携带的能量,并通过光诱导化学反应看到周围的世界。达维多夫在《生物学和量子力学》(Davydov,1982 年)中的观点是,量子力学与纯态孤立系统最为相关,因此对处于热平衡统计状态的生物系统意义不大。如果我们抛开量子力学是解释分子及其反应的性质所必需的这一事实——显然在从酶的作用到表型的遗传表达以及生物体构造的生化过程中都很重要——那么量子生物学就确定了
嵌合抗原受体 (CAR) T 细胞疗法彻底改变了血液系统恶性肿瘤的治疗,在原本难治的疾病中提供了显著的缓解率。然而,将其扩展到更广泛的肿瘤学应用面临着重大障碍,包括在实体瘤中的疗效有限、与毒性相关的安全问题以及制造和可扩展性方面的后勤挑战。本综述严格审查了旨在克服这些障碍的最新进展,重点介绍了 CAR T 细胞工程的创新、新的抗原靶向策略以及在肿瘤微环境中的递送和持久性的改进。我们还讨论了同种异体 CAR T 细胞作为现成疗法的开发、减轻副作用的策略以及 CAR T 细胞与其他治疗方式的整合。这项全面的分析强调了这些策略在提高 CAR T 细胞疗法的安全性、有效性和可及性方面的协同潜力,为其在癌症治疗中的进化轨迹提供了前瞻性的视角。
摘要:在电子垃圾日益成为全球关注的时代,可生物降解传感器的开发代表着朝着可持续环境监测迈出的关键一步。由不可生物降解材料制成的传统传感器是电子垃圾日益增多的重要原因。本文探讨了人工智能 (AI) 与可生物降解传感器的集成,这不仅可以减轻电子垃圾对环境的影响,还可以提高环境监测系统的精度、实时决策和效率。虽然这些 AI 增强型传感器提供了有希望的进步,但数据隐私、基础设施成本及其部署对环境的影响等挑战仍然存在。此外,本文还讨论了 AI 伦理和偏见缓解的关键问题,强调在开发 AI 驱动技术时需要透明、包容和跨学科的方法。讨论为 AI 增强型可生物降解传感器的未来可能性提供了见解,包括扩大应用、可生物降解材料的进步以及这些技术的道德部署。该论文强调了跨学科合作的必要性,以充分利用这些创新的潜力,同时确保它们符合可持续性和道德目标。
摘要:调节性非蛋白编码 RNA 发挥着各种复杂的生物学功能。之前,我们证明了人类非编码库 RNA1-1 (vtRNA1-1) 在抑制几种癌细胞系的内在和外在凋亡方面的作用。然而,在分子水平上,vtRNA1-1 的功能仍不完全清楚。在这里,我们创建了 HeLa 敲除细胞系,结果表明,在没有 vtRNA1-1 的情况下,长期饥饿会引发细胞凋亡水平升高,但在 vtRNA1-3 敲除细胞中则不会。mRNome 的下一代深度测序确定了 PI3K / Akt 通路和 ERK1 / 2 MAPK 级联,这两个重要的信号传导轴,在饥饿介导的细胞死亡条件下,在没有 vtRNA1-1 的情况下会受到错误调节。 vtRNA1-1 突变体的表达表明,vtRNA1-1 中心域的 24 个核苷酸的短片段对于成功维持抗凋亡性至关重要。本研究描述了人类 vtRNA1-1 对饥饿诱导的程序性细胞死亡的细胞信号传导依赖性贡献。
(学分:理论3)(教学时间 - 4)课程目标:了解微生物学的基础知识并了解环境中的作用。提供对微生物世界,微生物的基本结构和功能,代谢,营养,其多样性,生理学以及与环境和人类健康的关系的基本理解。具有隔离和操纵条件的实用技能。确保学生了解微生物的结构和功能。单元 - I(10小时)微生物多样性:微生物学,历史和微生物学范围,一般特征和分类的古细菌,细菌,真菌,藻类,原生动物,病毒,病毒和王室的基础。原核生物和真核生物之间的差异。单位II(15小时)细菌的超微结构:细胞结构 - 细菌及其生物合成的细胞壁,细胞包膜 - 胶囊和粘液层,细胞附加物 - pili,鞭毛,鞭毛和脂肪,细胞膜,细胞膜,包含体,质粒DNA和质子DNA和染色体和染色体DNA。细菌遗传学 - 结合,转导(广义和专业化)和转化。单位-V(10小时)微生物控制:灭菌,消毒,反杂质,熏蒸。物理控制:温度(潮湿的热量,高压灭菌,干热,热空气烤箱和焚化炉),干燥,渗透压,辐射,紫外线,电力,超声波,超声波波,过滤。化学控制:防腐剂和消毒剂(卤素,酒精,气态灭菌)课程学习结果(CLO):学生将能够1。2。单元-III(15小时)显微镜:染色 - 染色(简单和微分)显微镜的原理和类型 - 光学显微镜(明亮场,暗场,相位对比,荧光显微镜)和电子显微镜的原理,原理和申请营养类型,培养基类型的制备,微生物的培养,微生物生长曲线,病毒复制:裂解和裂解性周期,微生物的隔离,保存和维持微生物,有氧和厌氧的细菌培养,生物效应以及生物因素的作用以及生物因素对生长的生长。定义了微生物学的科学,其发展和在人类福利中的重要性。描述自发产生的历史概念以及执行
