细胞已经进化了分子机制的武器,以应对DNA的主要结构的连续改变。在细胞水平上,DNA损伤反应蛋白在DNA损伤部位积聚并组织成核灶。由Errol Friedberg所讲述的是,在1930年代,DNA修复的开创性工作受到物理学家与遗传学家之间的合作的刺激。近年来,物理学对自组织隔室的想法引入了风暴的细胞生物学领域。渗滤和相分离理论越来越多地用于模拟隔室的自组装,称为生物分子冷凝物,这些隔离式凝聚力有选择地浓缩没有周围膜的分子。在这篇评论中,我们在DNA损伤响应的背景下讨论了这些概念。我们讨论了将DNA修复灶作为cON致密的研究如何将分子机制与细胞生理功能联系起来,为调节机制提供新的见解,并为针对治疗目的的DNA损伤响应提供开放的新观点。
了解不同的类固醇我们的身体自然会产生类固醇激素,从而产生盐皮质激素(例如醛固酮),糖皮质激素和雄激素。皮质醇是产生的主要糖皮质激素,并支持许多生理功能,包括糖异生。这种皮质醇产生遵循昼夜模式,对人体具有多种生理影响。最高水平在早晨出现,然后全天下降,在一夜之间再次骑自行车。10-20 mg/天皮质醇是可接受的正常每日量,但由于压力,创伤,低血糖和其他需求增加产量的情况会改变。11当GC剂量高于生理水平时,会产生夸张的,药理学作用,即抗炎,但它们也导致负反馈回路,导致与其使用有关的有问题的副作用,包括高血糖的潜力。GC的预期高血糖效应与其他因素以及其他因素相关的剂量,半衰期,个人的胰岛素抵抗或胰岛素缺乏程度有关。以下摘要点和表2、3和4可能有助于您了解类固醇治疗对患者的影响:
肽与其独特的结合伙伴的精确选择性相互作用代表了设计新型疗法的出色起点。众所周知,具有多种关键生理功能和特定作用机理的肽具有明显的优势,包括优异的安全性和比传统小分子疗法的效率更高。天然存在的肽的某些内在弱点,例如可忽略不计的血浆半衰期,低生物利用度和潜在的免疫原性,限制了其作为药物的给药。纳米技术已经提出了几种有前途的策略来解决与治疗肽相关的局限性。本综述旨在对积极用于开发基于纳米系统的肽药物有效配方的策略进行最新摘要。我们首先关注有关基于肽的纳米药物的最新进展和更新。然后,我们指出了纳米系统如何改善治疗性肽的功能,以及在治疗性肽领域的未来机会和发展的挑战是什么。还讨论了通过替代给药途径的肽掺入纳米颗粒的潜在无创递送平台。
硅藻是一类真核生物,是自然界中常见的单细胞藻类,种类繁多,数量庞大,分布广泛。[1,2]硅藻体型很小,大小从0.01至0.1毫米不等。硅藻植物的光合作用可以吸收二氧化碳,释放氧气,对全球气候变化影响较大。硅藻作为重要的生物资源,是鱼类、贝类等水生动物的主要食物之一,在水生生态系统和生物环境监测中发挥着重要作用。[3]硅藻具有特殊的硅化细胞壁(硅藻壳),可分为辐射对称和双侧对称两种基本类型。硅藻壳是自然界中独特的、纯度极高的生物无机材料,也是最优秀的微纳生物平台材料之一,具有十分重要的研究意义。 [ 4 ] 硅藻壳不仅能增强硅藻的硬度和强度,提供其悬浮的力学性能,而且能提高其输送营养物质、吸附、黏附的生理功能,阻止有害物质的进入,使其用途越来越广泛。
肠道微生物群调节人体中的各种生理功能,包括消化,免疫调节,肠道屏障维持,甚至神经系统的活动。肠道微生物与大脑之间的双向通信(称为猪gut轴)对于平衡的代谢至关重要。最近的研究表明,肠道微生物群代谢产物,例如短链脂肪酸,吲哚衍生物,神经递质和其他生物活性化合物,可以对神经发生,髓鞘形成和轴突再生产生积极影响,从而在神经疗法和神经疗法的治疗策略中可能产生潜在的潜在。尽管对肠道微生物群代谢产物的研究越来越多,但了解它们在神经保护机制中的作用仍然有限。本文回顾了最著名的肠道微生物群代谢产物的分类,生产,功能和治疗潜力,及其对神经发生,突触发生,能量代谢,免疫调节和血脑屏障完整性的影响,将为肠道菌群的研究提供基础。
营养补充剂越来越多地生产并用于动物的营养益处,改善生理功能和增强健康[9,10]。例如,Li等人。[7]发现,用50 g l-citrulline补充Yili马的饮食增加了精氨酸和瓜氨酸的血浆浓度,从而改善了运动性能。可食用的鸟巢[EBN]是Swiftlet物种的唾液分泌物中的一种产品,是中国人中有价值的产品,由于其药物和营养特性,已被消耗了几个世纪,包括抗衰老,抗氧化,抗氧化,抗癌和抗炎[11,12]。EBN富含唾液酸(SA),它是一种具有代谢增强和抗氧化特性的生物成分,对马健康具有积极影响[12]。虽然营养补充剂通常用于增强赛马的健康和性能,但在阿拉伯种族种马中补充(EBN)补充的安全性和功效的研究有限,尤其是在减少运动引起的炎症和支持免疫功能方面。
与肿瘤细胞中积累的遗传和表观遗传变化并行,慢性肿瘤促进肿瘤建立了一种局部微环境,从而促进了恶性肿瘤的发展。虽然了解促进肿瘤与非肿瘤促进肿瘤的特定因素的知识仍然是早期的,但仍然是对“癌症的标志”的突出显示的,但显然显然是肿瘤刺激性炎症对于识别肿瘤的炎症至关重要。对免疫代谢和弱量代谢的研究揭示了色氨酸分解代谢酶IDO1作为肿瘤促进肿瘤中的核心元素的作用。在一个级别上,IDO1表达促进了对肿瘤抗原的免疫耐受性,从而帮助肿瘤逃避适应性免疫控制。此外,最近的发现表明,IDO1还通过颠覆局部先天免疫来促进肿瘤新血管化。这种新认识的IDO1功能是由称为IDVC(IDO1依赖性血管化细胞)的独特髓样细胞群介导的。最初在转移性病变中鉴定出,IDVC可能会对各种疾病环境中的病理新生血管形成更广泛的影响。 从机械上讲,通过炎性细胞因子IFN G在IDVC中诱导IDO1表达,通过刺激IL6的表达(一种强大的促促血管生成细胞因子)来阻止IFNG对新血管形成的拮抗作用。最初在转移性病变中鉴定出,IDVC可能会对各种疾病环境中的病理新生血管形成更广泛的影响。从机械上讲,通过炎性细胞因子IFN G在IDVC中诱导IDO1表达,通过刺激IL6的表达(一种强大的促促血管生成细胞因子)来阻止IFNG对新血管形成的拮抗作用。通过促进血管通道,这种新归因的IDO1功能与其他癌症标志功能(肿瘤促进肿瘤的侵入,免疫逃生,细胞代谢改变,转移)的参与可能源于正常的生理功能,例如受伤的治疗术中的正常生理功能。了解IDO1参与这些癌症标志功能的细微差别在不同的肿瘤环境之间对成功的IDO1-定向疗法的未来发展至关重要。
人类呼吸系统和循环系统紧密协作,确保向所有细胞输送氧气,这对于 ATP 生成和维持生理功能和结构至关重要。在氧气供应有限的情况下,缺氧诱导因子 (HIF) 保持稳定,并在维持细胞缺氧适应过程中发挥根本作用。HIF 最初是在研究促红细胞生成素产生调节时发现的,它影响生理和病理过程,包括发育、炎症、伤口愈合和癌症。HIF 通过增强腺苷生成和受体信号传导来促进细胞外腺苷信号传导,代表一种内源性反馈机制,可抑制过度炎症、支持损伤消退并增强缺氧耐受性。这对于涉及组织缺氧的疾病尤其重要,例如急性呼吸窘迫综合征 (ARDS),这种疾病在全球范围内带来了重大的健康挑战,而没有特定的治疗方案。因此,扩大 HIF 介导的腺苷产生和受体信号传导的药理学策略非常重要。
突触体传统上是从啮齿动物或死后人类脑组织中富集的,但啮齿动物模型缺乏人类特有的突触特征,而死后组织中突触体的功能受到死后间隔的限制,并且通常仅显示疾病终点。此外,由于道德问题和可用性问题,只有少数研究针对人类样本。然而,神经类器官 (NO) 已成为分离完整和活的人类神经末梢以研究人类特有的突触传递方面的可能新来源。此外,突触体的富集通常使用密度梯度离心进行,这需要大量的起始材料。在本研究中,我们开发了一种应用差速离心方案从人类 NO 中富集突触结构的方法。然后,我们使用基于质谱的定量蛋白质组学来记录突触和生长锥特异性蛋白的富集,并在 KCl 刺激下进行定量磷酸化蛋白质组学来证明衍生突触结构的活力和生理功能。
阐明生物系统的生物化学是在正常生理和病理学中的角色下的关键。人脑是一种高度复杂的器官,依靠多种必需的化学元素和化合物来维持正常的功能。这种复杂性反映在大脑的巨大结构和化学异质性中,不同的大脑区域表现出不同的细胞群体,功能和化学组成[1]。因此,为了定义大脑的生物化学,将出色的化学敏感性与高分辨率成像能力相结合的技术至关重要。发现此信息至关重要;不仅在理解大脑的生理功能,而且还探讨了在衰老和病理过程中发生的生化变化,例如参与退化性脑疾病的发作和进展的生理变化,包括阿尔茨海默氏病和帕金森病。更好地了解患病大脑中的生化环境如何强烈支持可行的物理化学技术用于疾病诊断和治疗。提供化学敏感的纳米级分辨率成像的一种技术是STXM形式的X射线光谱。此基于同步加速器的方法配备了元素组成