医疗设备 - 利用信息技术环境(MD-LITE)是一种平台 - IT(PIT)系统,该系统由非居民医疗设备和适用组件组成,该系统托管在退伍军人卫生管理(VHA)医疗设施中。MD-Lite坑由136个医疗设施的医疗资产组成。系统环境由用于诊断,治疗或监测生理测量或用于健康分析目的的医疗设备/系统组成,并已遵守美国食品和药物管理局(FDA)预上市通知并完成并完成了并完成了并完成了并完成了预认证 - 510(k)认证 - 或前批准(PMA)。医疗设备/系统的示例包括但不限于生理监测系统,呼吸机,输液泵,计算机断层扫描(CT)扫描仪,MUSE™心脏病学信息系统,图片归档和通信系统(PACS),临床信息系统(CIS)和实验室分析器。这包括直接连接到患者的医疗设备/系统,处理人和其他生物标本,创建医学图像,显示电生理波形,获得生理测量和/或直接对患者进行治疗支持。这些设备/系统不能使用退伍军人事务(VA)批准的安全配置基线来管理,并且不能接受自动漏洞修补程序(即,操作系统的自动安装和/或应用程序更新,安全补丁,信息和技术办公室,信息和技术办公室(OIT)通过System Center Configuration Manager(SCCM)管理,BIGFIX)。md-lite依靠退伍军人事务企业网络(VAEN)平台提供网络骨干连接性以及所有需要网络运输才能运行的支持系统。
• 推进新方法的工具,用于实时捕获和量化行为的多个维度。 • 推进环境感知(例如物联网 [IoT])和/或改善情境测量与行为测量集成的工具。 • 现有智能硬件技术(例如手机、可穿戴技术)的新应用和/或利用,用于捕获动态行为和/或在同一时间尺度上整合行为和生理测量。 • 不太显眼的无线移动设备(例如无背包),具有长期和高存储容量(例如,内存或功耗允许跨天采样而不是间歇采样),以实现更高的时间分辨率和/或跨时间尺度(例如从毫秒到几天)的使用。
林业机械操作员的工作对身体和精神都造成很大的负担。部分是因为它包含静态和重复性工作的元素,部分是因为需要处理大量信息并在短时间内做出许多决策。心理负荷是影响人类处理信息能力的各种形式的负荷的术语。没有任何单一因素可以衡量精神压力。使用表现以及主观评估和心理生理测量方法来测量心理负荷。心理生理学测量方法的例子有肌肉活动、心率、心率变异性、呼吸频率、皮肤电导和手指温度。减轻叉车驾驶员负担的一种方法是使起重机工作的某些部分实现自动化。
医学,特刊“脑连接的方法学进展”(2012 年);英国皇家学会 A 哲学学报,特刊“评估脑动力学和心血管控制中的因果关系”(2013 年);生理测量,特刊“第 8 届欧洲心血管振荡研究小组会议,ESGCO 2014”(2015 年);熵,特刊“脑和生理网络中的信息动力学”(2018 年);熵,特刊“通过生物医学信号分析评估生理系统的复杂性”(2019 年);熵,专题集合“信息理论专题论文”(2020 年);生物医学信号处理与控制,特刊“心血管振荡的生物医学信号处理与建模”(2020 年) • 国际会议程序委员会成员:IEEE 年度国际会议
不幸的是,儿童和成人的这种分离也导致了听力学研究和开发的分离。虽然在成人听力学领域,开发主题围绕根据定义的标准进行言语测听和助听器验配,即使在困难的条件下(噪音),并且一致认为超阈值测听已被电生理测量取代, con - 儿科听力学领域的研究非常关注客观测听问题。这种集中肯定是耳声发射激增的结果,这是由 David Kemp 非常实用的测量设备引发的。同时,研究集中在这种客观的测听方法上,希望这种方法也可以在麻醉下进行,从而独立于任何儿童的合作
这是国家5个工作卫生部门课程的强制性单位。学习者应该将其作为该课程的一部分。他们也可以将其作为独立单位。它适用于没有卫生部门经验的学习者。单元向学习者介绍心血管系统的结构和功能。学习者参加了一项实际活动,该活动有助于他们发展知识和技能,以在不同的活动水平上进行生理测量。学习者还参加另一项活动,以学习如何展示当前的急救程序,以为成人伤亡提供基本的生活支持。卫生部门包括国家卫生局(NHS)(初级和二级护理),独立医疗保健,补充疗法,生命科学和零售药品行业以及社区和志愿部门。
空中交通管制员 (ATC) 操作员需要始终集中精力监控导航、辐射以及监督和执行飞机引导。显然,这样的工作会导致工作人员的精神负荷。基于这些问题,有必要对 XYZ 机场 ATC 操作员的精神负荷进行分析研究。精神负荷的测量可以通过两种方式进行:主观测量和客观测量。精神负荷的主观测量可以用 NASA-TLX 方法进行。而客观测量可以通过生理测量来完成,例如通过心率。结果表明,XYZ 机场 ATY 操作员的精神负荷属于高类别,并且主观测量结果非常高。绩效水平是导致 ATC 操作员感知到高精神负荷的主要因素。而通过客观测量发现,空管人员的脑力负荷处于中等水平。
斯科特·加尔斯特空军研究实验室 俄亥俄州赖特-帕特森空军基地 面部肌电图 (fEMG) 是一种肌电图测量技术,主要用作测量情感的工具,但之前的实验表明,它也有助于量化认知工作量。在当前的研究中,实时监测了两个与任务无关的面部肌肉,皱眉肌和额外侧肌,以确定它们是否对遥控飞机 (RPA) 任务环境中的工作量变化敏感。应用实时信号处理技术从窗口 fEMG 数据中得出中值幅度和零交叉率。对这些特征的统计分析确定,这两种肌肉都对特定工作量操纵的变化很敏感。这项研究表明,从上述肌肉中提取的实时 fEMG 特征有可能作为或有助于认知工作量的指标。未来的工作旨在改进 fEMG 数据收集技术,以产生更灵敏、更具代表性的适合工作量评估的测量方法。长时间保持警惕的能力对于航空航天领域的许多职位来说都至关重要。例如,飞行员、传感器操作员和空中交通管制员必须保持高水平的态势感知,以确保最佳的安全和性能。认知工作量是决定操作员在防止危险后果所需水平上执行能力的重要因素 (Young & Stanton, 2002)。认知超负荷和负荷不足都会导致性能下降,而适度的认知唤醒有助于实现理想的性能能力 (Cohen, 2011)。为了减轻航空航天操作员的警觉负担并帮助他们保持理想的表现,开发了感知-评估-增强 (SAA) 框架,以识别和缓解各种任务环境中的认知工作量不平衡 (Galster & Johnson, 2013)。由于认知工作量的变化已被证明与各种生理事件相关,因此可以应用该框架来感知航空航天操作员产生的一系列生理指标,将这些指标纳入可以评估操作员认知状态的模型中,然后增强操作员的表现以减轻认知超负荷或负荷不足引起的绩效下降 (Wilson & Russell, 2007; Hoepf, Middendorf, Epling, & Galster, 2015; Hoepf et al., 2016)。用于评估工作量 (Hoepf et al., 2016)。为了使基于 SAA 的工作负荷建模方法能够在广泛的任务环境中发挥作用,必须将大量生理测量作为模型的输入。操作员执行的任务的性质可能决定了每种生理测量(皮质、心脏等)的有用性。例如,在心算类型的任务中,发现皮质测量与工作负荷有很好的关联,而心脏测量对主要需要使用仪器的飞行任务中的工作负荷很敏感,而眼部测量与高度依赖视觉的飞行任务中的工作负荷有关(Hankins & Wilson,1998)。许多心理生理学家和工程师正在研究各种生理测量与认知工作负荷之间的相关性,试图进一步提高实时模拟个人认知状态的能力。面部肌电图 (fEMG) 是最近被探索作为认知工作负荷潜在指标的生理信号之一。fEMG 是一种肌电图 (EMG) 测量技术,通过感应和放大产生的微小电脉冲来描述肌肉活动
生理自适应虚拟现实系统根据用户的生理信号动态调整虚拟内容,以增强交互并实现特定目标。然而,由于不同用户的认知状态可能影响多变量生理模式,自适应系统需要进行多模态评估,以研究输入生理特征与目标状态之间的关系,从而实现高效的用户建模。在这里,我们研究了一个多模态数据集(EEG、ECG 和 EDA),同时与两个不同的自适应系统交互,根据 EDA 调整环境视觉复杂性。视觉复杂性的增加导致 alpha 功率和 alpha-theta 比率的增加,反映出精神疲劳和工作量增加。同时,EDA 表现出明显的动态变化,紧张和相位成分增加。整合多模态生理测量进行适应性评估,加深了我们对系统适应对用户生理影响的理解,使我们能够解释它并改进自适应系统设计和优化算法。