计划的目标是罗切斯特大学药理学和生理学研究生计划的目的,是提供一个最先进的学习环境,学生探索分子和细胞机制,使生物体能够检测和响应信号分子和药理药物。我们旨在培训科学家的分子和综合药理和生理学,并为独立研究和教学的成功职业做好准备。每个学生将成功从事学术界或生物技术/制药行业的研究职业所需的技术,分析和关键技能。该课程提供博士学位。药理学和生理学的学位,包括基础和先进生物医学,药理学和生理学的课程;原始实验室研究;以及博士论文的准备和辩护。博士学位在完成可发表论文中描述的学术工作和研究完成后,获得学位。下面列出了我们的部门和计划网站。
摘要该研究的目的是了解Awassi Lambs饮食中Sumac粉末的生物学作用。总共使用了24个AWASSI羔羊(3-4个月)(16.5±1.5g男性和20±2.5 g女性),分为四组(6只动物 / 3个复制)。在情况下(2.5*1.5 cm),实验动物分别喂入四个。第1组在饮食中喂食而不增加0%(对照);组2、3和4被喂食1、3和5%sumac粉末。结果表明,在AST和ALT中的两组之间的饲料显着差异中添加Sumac粉末。与对照组相比,两组之间在肌酐,尿素,总蛋白,白蛋白和球蛋白水平中没有显着意义。我们的结果表明,sumac可以用于动物食品中,而不会对其健康产生任何影响。。
如果您是目前在生物医学科学学士或理学学士学位的三年级学生,并且正在考虑在2024年在解剖学和生理学系中招募荣誉或硕士学位,则可以申请夏季研究学生奖学金或度假奖学金,以从事监督研究项目。该学生提供了少量的生活津贴,使您能够在暑假期间从事一个基于实验室的项目4个或更长时间。夏季研究生奖学金和度假奖学金的目的是为大学生提供一个获得第一手研究经验的机会。
微生物和微生物是肉眼不可见的小生物,因为它们的大小为0.1 mm或更小。因此,只有在显微镜下才能看到它们在土壤内,在所有类型的水域,空气,灰尘颗粒上,内部和内部以及其他动物和植物上的各种水域,空气,灰尘颗粒中的分布。微生物已被证明是该行业的自然产品的迷人来源,特别是制药行业微生物微生物是生物技术有价值的,因此可以很好地利用用于二级代谢。(Div>(Diraviyam等人2010年),只要仍然存在生物技术和生物医学的主要挑战(例如,出现疾病,既定疾病,已建立疾病,抗生素抗性,环境污染,环境污染以及对可再生能源的需求)将对人类提供可持续和环境友好的珍藏的努力,从而可以利用人类的生产能力来实现这一努力。当微生物进入环境和能源部门时,最好的迄今为止。正如杰克逊·福斯特(Jackson W.2013)
摘要甲基辅酶 M 还原酶 (MCR) 催化甲烷生成的最后步骤,甲烷生成是一种微生物代谢,几乎所有的生物甲烷排放到大气中都是由它引起的。几十年的生化和结构研究已经对 MCR 的体外功能产生了详细的了解,但对于 MCR 和甲烷产菌生理之间的相互作用知之甚少。例如,虽然通常说 MCR 催化甲烷生成的限速步骤,但这尚未经过明确的测试。在本研究中,为了更直接地了解 MCR 对甲烷八叠球菌生长的控制,我们生成了一种染色体上具有可诱导的 mcr 操纵子的菌株,从而可以仔细控制 MCR 表达。我们表明,在底物充足的分批培养中,MCR 不会限制生长速率。但是,通过仔细滴定 MCR 表达,可以获得生长限制状态。对经历 MCR 限制的 M. acetivorans 进行转录组分析,揭示了一种整体反应,其中数百种基因在不同功能类别中存在差异表达。值得注意的是,MCR 限制导致甲基硫醚甲基转移酶的强烈诱导,这可能是由于代谢中间体的循环不足造成的。此外,mcr 操纵子不受转录调控,即它是组成性表达的,这表明当细胞经历营养受限或应激条件时,MCR 的过量可能是有益的。总之,我们表明存在广泛的细胞 MCR 浓度可以维持最佳生长,这表明合成代谢反应等其他因素可能是产甲烷生长的限速因素。
青春期的特征是童年的终点和青春期的开始。所有生理和神经系统变化代表了人类发展的关键阶段,从童年到成年。在此阶段,随着它们成熟的各种人类系统,它们之间存在着重要而重要的生物学相互作用。通过激素,物理和神经过程对不同生物系统的和谐功能对于人类发展的这一阶段至关重要。这些生物系统的功能取决于个人的遗传遗产和他们作为青少年的社会生活(例如,家庭支持,社会经济地位和健康的行为)(1-4)。在女孩中,青春期的发作开始于11岁左右,而在男孩中,它发生在12岁左右。在这段时间里,发生了第一次解剖转化,例如女孩的乳腺发育和男孩的睾丸体积增加(4)。下丘脑 - 垂体 - 基达轴在青春期期间经历了显着的激活和成熟,导致性激素分泌,包括睾丸激素和雌激素。这些激素变化影响了继发性特征,生殖器官以及整体身体生长和成熟的发展(5)。在青春期,下丘脑是大脑的一个区域,开始释放促性腺激素释放激素(GNRH),该激素(GNRH)刺激了垂体以释放两种重要的激素:叶酸激素(LH)和刺激性激素(fsh)(fsh)(6)。早期的青春期这些激素作用于雌性或雄性睾丸的卵巢作用,从而触发性激素的产生 - 雌性的雌激素和男性的睾丸激素(6)。青春期时期取决于遗传学和社会因素,例如营养,社会经济地位和心理特征(4,5)。这一时期是由激素浮动和遗传因素驱动的,有助于在青春期观察到的认知和行为转化,通常发生在性腺后2 - 4年后(4,7)。大脑中的结构和功能重组会影响负责情绪调节,社会认知和决策的领域。
细胞质中密布着导致其行为不理想的分子。细胞质拥挤会影响化学反应速率、细胞内水的流动性和大分子复合物的形成。过度拥挤可能会造成灾难性的后果;为了解决这个问题,细胞已经进化出急性和慢性的稳态机制来优化细胞拥挤。在这里,我们提供了以生理学为中心的分子拥挤概述,重点介绍了我们对其感知和控制的当代进展。长期以来,相分离被认为是一种拥挤引起的微区室化形式,最近的研究表明,相分离允许细胞通过生物分子凝聚物的作用来检测和应对细胞内拥挤。越来越多的证据表明,拥挤与细胞大小和液体量、对物理压缩和干燥的稳态反应、组织结构、昼夜节律、衰老、跨上皮运输以及全身电解质和水分平衡密切相关。因此,分子拥挤是一个基本的生理参数,影响从分子到生物体的多种功能。
摘要 开发恢复听力的新疗法需要有关耳蜗的空间尺寸、组织形态和感音神经状态的详细信息。然而,耳蜗深深嵌入颞骨,因此难以使用成像技术。在这里,我们在作为听觉研究的既定动物模型的物种中采用了三维 X 射线相位对比断层扫描和光片荧光显微镜及其组合。虽然光片荧光显微镜可以对听觉神经细胞进行特定的免疫标记,但 X 射线相位对比断层扫描使我们能够获得均匀体素大小的结构信息,并利用细胞核等亚细胞特征,而无需特定的样品制备。耳蜗形态的多尺度和多模态成像将促进基因治疗和人工耳蜗植入等创新耳聋方法的临床前研究。关键词:耳蜗,X射线相位对比断层扫描,光片荧光显微镜
分析(图2)。,我们首先观察到器官的腔侧的一个大腔,这与肠腔相似。然后,我们在某些上皮细胞(蓝色虚线区域)上观察到具有隐窝结构和微绒毛的极化上皮细胞,这种特征通常是