Parul Singh,Manish Bakshi和Anmol doi:https://doi.org/10.33545/26174693.2024.v8.i7d.1471摘要摘要全球可持续农业方法的扩展需求促进了对传统工厂增长调节器的基于工厂的替代方案的研究。传统的PGR虽然有效,但由于其合成成分以及残留污染的可能性,可以提供环境和健康危害。因此,将天然植物提取物作为一种对环境有益且环保的替代方案的好奇心增加。从各种植物来源产生的植物提取物包含各种生物活性化学物质,例如植物激素,酚类,类黄酮和生物碱,这些化学物质会影响植物的生长和发育。从海藻,辣木和印em等植物中提取的提取物在提高发芽率,提高根系结构和增加压力抗性方面表现出了希望。这些提取物是通过模仿或改变天然激素(如生长素,gibberellins,cytokinin和bubscisic Acid)的作用来起作用的。此外,它们还提供了其他好处,例如抗菌能力,可以降低植物疾病的发生和抗氧化活性,从而提高植物对环境压力源的耐受性。植物提取物作为合成PGR的天然替代品具有巨大的希望,为提高植物的生长和生产力提供了可持续的解决方案。由于其具有遗传均匀性的父植物克隆的能力而受到高度重视(Abhinav等,2016)[2]。,2013年)[20]。尽管在标准化和大规模应用方面仍然存在挑战,但持续的研究和创新可以释放其全部潜力,从而有助于更可持续的农业实践并改善环境健康。关键词:生物活性化学物质,环保化学物质,植物提取物,海藻,可持续的耕作引入植物之间的茎切割传播是园艺和农业中最基本的方法之一,可快速增加父植物的数量。剪切很难在没有生长兴奋剂的帮助的情况下开发,并且通常需要大量的努力(Uddin等,2020)[49]。生长素可促进血管组织分化,抑制分支分化,并抑制叶片中脱落层的产生。生长素是用于加快不定根发展的茎插条中最关键的激素之一(Sahin and Uysal 2018)[45]。生长素会影响根部发育并增强切割生根百分比(Ahmed等,2017)[3]。年轻的植物芽和叶子会产生天然的生长素,但是,插曲的成功生根需要合成生长素的应用,例如萘 - 乙酸(NAA)和吲哚-3-丁酸(IAA)(Galavi等人 然而,尽管合成生根激素的使用对环境,人类健康和经济限制的影响很高,但它们的使用却引起了许多问题(Dunsin等,2014)[11]。 ,而天然根刺激剂是生根园艺作物的安全且具有成本效益的方法。 它们对环保,可以替代合成植物生长激素。然而,尽管合成生根激素的使用对环境,人类健康和经济限制的影响很高,但它们的使用却引起了许多问题(Dunsin等,2014)[11]。,而天然根刺激剂是生根园艺作物的安全且具有成本效益的方法。它们对环保,可以替代合成植物生长激素。因此,植物提取物的使用被认为是一种避免使用合成激素的园艺作物的重要非化学方法(Rajan and Singh 2021)[39]。一些天然植物提取物是芦荟,椰子水,大蒜,柳叶提取物,海藻提取物,莫林加叶提取物,肉桂粉,姜和甘草(Khalid and Ahmed 2022; Aryan等,2023)[27,6]。它们含有生根激素,例如生长素,gibberellins,cytokinin,许多复杂成分,包括多糖,糖蛋白,酚类化合物,酚类,乙烯,脱甲酸,水杨酸,
摘要:生长素反应因子(ARF)是一类转录因子,通过与生长素反应元件结合在生长素调控中发挥重要作用。ARF 基因在植物中是一个大的多基因家族,但据我们所知,ARF 基因家族在红薯中尚未得到深入研究和表征。本研究在红薯中共鉴定出 25 个 ARF 基因。利用不同的生物信息学工具系统地研究了鉴定出的 ItrARF 基因的保守基序、染色体位置、系统发育关系和蛋白质特征。分析了 ItfARF 基因在发育早期储存根和正常根中的表达模式。ItfARF16b 和 ItfARF16c 均在储存根中高表达,在正常根中表达量极小或不表达。ItfARF6a 和 ItfARF10a 在正常根中表达量较高,但在储存根中表达量不高。随后,ItfARF1a、ItfARF2b、ItfARF3a、ItfARF6b、ItfARF8a、ItfARF8b 和 ItfARF10b 在两种根类型中均有表达,每种表达量为中等至高水平。这十个 ARF 基因及其突出的表达表明它们在每种根类型发育中的重要性。这项研究提供了有关红薯中 ARF 家族的全面信息,这将有助于未来研究进一步验证这些 ItfARF 基因的功能。
多个Gretchen Hagen 3(GH3)基因通过其在维持激素稳态中的作用而与植物生长和发育的一系列过程有关。但是,关于GH3基因在番茄(Solanum lycopersicum)中的功能的研究有限。在这项工作中,我们研究了番茄GH3基因家族成员SLGH3.15的重要功能。SLGH3.15的过表达导致该植物的上述和地下部分的严重矮人,伴随着自由IAA含量的大幅降低,并降低了SLGH3.9的表达,SLGH3.9(SLGH3.15)的表达。IAA的外源供应对原始根的伸长产生了负面影响,并部分恢复了SLGH3.15 -ERCORTEXPRYSE线中的重力缺陷。 虽然在SLGH3.15 RNAi线中未观察到表型变化,但SLGH3.15和SLGH3.9的双基因敲除线对使用生长素极性转运抑制剂的处理敏感不太敏感。 总的来说,这些发现揭示了SLGH3.15在IAA稳态中的重要作用,并且是自由IAA积累和番茄中侧根形成的负调节剂。IAA的外源供应对原始根的伸长产生了负面影响,并部分恢复了SLGH3.15 -ERCORTEXPRYSE线中的重力缺陷。虽然在SLGH3.15 RNAi线中未观察到表型变化,但SLGH3.15和SLGH3.9的双基因敲除线对使用生长素极性转运抑制剂的处理敏感不太敏感。总的来说,这些发现揭示了SLGH3.15在IAA稳态中的重要作用,并且是自由IAA积累和番茄中侧根形成的负调节剂。
在多细胞生物中,特定组织是由干细胞的特定种群通过不对称细胞分裂的循环产生的,其中一个女儿经历了分化,另一个女儿维持增生特性。在拟南芥根中,哥伦氏菌 - 一种保护和定义干细胞生态位位置的重力感应组织 - 代表了组织的典型例子,该组织的组织仅由增殖和分化之间的平衡决定。柱状细胞通过二元细胞命运开关衍生自单层干细胞,该开关由多个独立的调节输入精确控制。在这里,我们表明HD-ZIP II转录因子(TFS)HAT3,ATHB4和AHTB2冗余地调节了拟南芥根中的小肠干细胞命运和图案。HD-ZIP II TFS通过充当FEZ/ SMB电路的效应子,同时通过干扰生长素信号来抵消激素诱导的分化,从而促进Columella干细胞增殖。总体而言,我们的工作表明HD-ZIP II TFS连接两个相对的平行输入,以调整柱状干细胞中增殖与分化之间的平衡。
自Skoog和Miller发表有关组织培养器官生长的化学调控的开创性工作已有65年以上(Skoog&Miller,1957年)。经过这么多年,他们的论文仍引用了高度引用,并且与植物生物学的多个方面有关。尽管本文也许是Skoog的实验室中最著名的,但最著名的是Skoog,但在研究植物生长物质方面的历史悠久。最初来自瑞典,斯科格(Skoog)在加州理工学院(Caltech)赢得了他的本科和博士学位,在那里他从事生长素生理学工作。后来他于1947年加入威斯康星大学麦迪逊分校,担任教职员工,在他的职业生涯中发表了170多篇论文,主要集中在植物肌剂上(Armstrong,2002年)。在威斯康星州开始几年后,他的实验室招募了一位博士后同事卡洛斯·米勒(Carlos Miller)继续从事激素生理学工作。Miller有一项雄心勃勃的任务,以确定负责植物组织中细胞分裂的物质。这些年来,在1957年的论文中,植物生理学家搜寻新因素并表征了最近确定的植物生理学家,对激素生物学表现出了巨大的生长和强烈的热情(Thimann,1974)。先前已经建立了体外技术,并且已经对生长素的作用进行了深入研究。Miller成功地识别了促进细胞分裂的化合物,并与先前在生长素和体外技术方面的工作一起,构成了Skoog 1957年论文的基础。在这里,我讨论了背景,论文以及源于Skoog和Miller的开创性作品的含义。
摘要:生长素反应因子(ARFS)是调节生长素期反应基因表达的转录因子家族。在这里,我们对四倍体蓝莓(vocinium corymbosum cv。“ draper”)基因组序列。物理和化学特性,系统发育进化,基因结构,保守基序,染色体位置以及蓝莓ARF基因的顺式作用元素。在其基因组中发现了总共70个蓝莓ARF基因(VCARF),可以分为六个亚家族。VCARF基因在40个染色体上分布不均匀,并观察到编码长度从162到1117氨基酸的蛋白质序列。其外显子数量从2到22。VCARF启动子区域包含与光信号传导,有氧代谢,植物激素,压力和细胞周期调节相关的多个功能域。在蓝莓中发现的VCARF基因的家庭成员多于以前研究的植物,这可能是由于全基因组复制和/或串联复制的发生。vCARF表达模式,并观察到VCARF3,VCARF4,VCARF14,VCARF37和VCARF52都起着重要作用。vcarf3和vcarf4似乎充当阻遏物,而VCARF14则是公司和软质量品种之间果实差异的重要因素。
生长素诱导降解决定子 (AID) 系统是一种强大的化学-遗传方法,通过小分子进行条件性蛋白酶体降解来操纵内源蛋白质水平。到目前为止,该系统还没有在约氏疟原虫 (P. yoelii) 中进行改造,约氏疟原虫是一种重要且广泛使用的疟原虫啮齿动物寄生虫模型,可用于研究疟疾生物学。在这里,利用 CRISPR/Cas9 基因组编辑方法,我们生成了两种无标记转基因约氏疟原虫寄生虫系 (eef1a-Tir1 和 soap-Tir1),分别在 eef1a 和 soap 启动子下稳定表达水稻基因 tir1。这两条系在寄生虫生命周期中正常发育。在这些背景下,我们使用 CRISPR/Cas9 方法用 AID 基序标记两个基因 (cdc50c 和 fbxo1),并用生长素询问这两种蛋白质的表达。 eef1a - Tir1 系可在无性裂殖体和有性配子体阶段有效降解 AID 标记的内源性蛋白质,而 soap - Tir1 系可在动合子阶段降解蛋白质。这两个系将成为研究基于 P. yoelii 的疟原虫寄生虫生物学的有用资源。
摘要CRISPR/CAS已彻底改变了植物中的基因组工程。然而,尚未探索使用抗Crispr蛋白作为防止CRISPR/CAS介导的基因编辑和植物中基因激活的工具。这项研究描述了烟熏本米那(Nicotiana Benthamiana)的两种抗Crispr蛋白Acriia4和Acrva1的表征。我们的结果表明,当与CRISPR/CAS9瞬时共表达时,Acriia4可防止叶片位置定向的诱变。以类似的方式,AcRVA1能够防止CRISPR/CAS12A介导的基因编辑。此外,使用N. benthamiana系组成表达Cas9,我们表明,使用烟草蚀刻病毒的Acriia4的病毒递送能够完全废除当用病毒传递引导RNA时获得的高编辑水平,在这种情况下,在这种情况下是马铃薯病毒X。我们还表明,Acriia4和AcRVA1抑制基于记者基因的基于CRISPR/DCAS的转录激活。在Acriia4的情况下,这种抑制以高度有效的剂量依赖性方式出现。此外,生长素脱脂与Acriia4的融合导致下游报告基因的生长素调节的激活。此处报道的Acriia4和Acrva1的强抗CAS活性为植物中基因编辑和基因表达的定制控制开辟了新的可能性。
横向分支是影响作物产量的关键农艺性状。在番茄(溶胶lycopersicum)中,横向分支过多是不利的,并导致了巨大的劳动力和管理成本。因此,优化横向分支是番茄育种的主要目标。尽管已经报道了番茄中与横向分支有关的许多基因,但其网络基础的分子机制仍然难以捉摸。在这项研究中,我们发现WRKY基因WRKY-B(用于WRKY桥梁)的表达曲线与生长素依赖性的腋芽发育过程有关。由CRISPR/CAS9编辑系统产生的WRKY-B突变体的侧向分支更少,而WRKY-B过表达线的侧向分支比野生型植物更多。此外,WRKY-B可以直接瞄准众所周知的分支基因盲(BL)和生长素外排载体基因PIN4以激活其表达。BL和PIN4突变体均表现出降低的侧向分支,类似于WRKY-B突变体。WRKY-B,BL和PIN4突变植物的腋芽芽中的IAA含量明显高于野生型植物中的含量。此外,WRKY-B还可以直接瞄准AUX/IAA基因IAA15并抑制其表达。总而言之,WRKY-B在BL,PIN4和IAA15的上游进行了调节,以调节番茄横向分支的发展。
FLACK, KD、HM HAYS、J. MORELAND 和 DE LONG。运动减肥:进一步评估运动的能量补偿。《运动锻炼医学科学》,第 52 卷,第 11 期,第 2466 – 2475 页,2020 年。目的:本研究评估了个体在 12 周有氧运动干预期间如何补偿能量消耗,阐明潜在机制以及运动剂量在补偿反应中的作用。参与者和设计:针对 18 至 40 岁、体重指数为 25 至 35 的久坐成年人进行三组随机对照试验。组别包括每周六次锻炼、每周两次锻炼和久坐对照组。方法:运动能量消耗率是根据五个心率区平均的分级运动测试计算得出的。能量补偿计算为预期体重减轻(基于运动能量消耗)与脂肪和非脂肪质量(DXA)变化之间的差值。通过间接量热法评估静息能量消耗,并评估空腹和餐后(2 小时内 6 个时间点)酰化生长素释放肽、瘦素、胰岛素和胰高血糖素样肽 1 (GLP-1) 的浓度。结果:6 天·周 -1 组每周消耗的能量(2753.5 kcal)更多,运动时间(320.5 分钟)比 2 天·周 -1 组(1490.7 kcal,1888.8 分钟,P < 0.05)更长,因此与 2 天或对照组相比,脂肪减少更多(P < 0.05)。运动组在补偿的百分比或总 kcal 方面没有差异。酰化生长素释放肽的曲线下面积 (AUC) 下降幅度越大,预示着脂肪减少幅度越大,无论组别、每周消耗的能量、锻炼持续时间或锻炼强度如何。瘦素 AUC 的变化是能量补偿的唯一独立预测因素,瘦素 AUC 下降幅度越大,预示着能量补偿越少。锻炼频率、消耗的能量、持续时间或强度不影响能量补偿。结论:瘦素是通过锻炼成功减肥的重要因素,餐后瘦素下降幅度越大,则补偿越少。锻炼量越大不会影响对锻炼引起的能量不足的补偿反应。关键词:能量补偿、锻炼、减肥、瘦素、生长素释放肽 I