摘要 近年来,护肤品的开发日益增多。含有经证实有效的活性成分的化妆品配方,即药妆,是基于各种化合物,包括肽。具有抗酪氨酸酶活性的不同美白剂已应用于药妆领域。尽管它们很容易获得,但由于毒性、稳定性差等因素,其适用性往往受到限制。在这项工作中,我们展示了缩氨基硫脲 (TSC)-肽结合物对二酚酶活性的抑制作用。三肽 FFY、FWY 和 FYY 通过酰胺键形成在固相中与三种带有一个或两个芳香环的 TSC 结合。然后在鼠黑色素瘤 B16F0 细胞系中检查化合物作为酪氨酸酶和黑素生成抑制剂的作用,然后对这些细胞进行细胞毒性测定。计算机模拟研究解释了测试化合物之间观察到的活性差异。 TSC 1 结合物在微摩尔水平上抑制蘑菇酪氨酸酶,IC 50 低于广泛使用的参考化合物曲酸。到目前为止,这是第一份关于合成用于酪氨酸酶抑制目的的硫脲与三肽结合的报告。
摘要:软骨肉瘤 (CHS) 是异质性的,但总体而言,是第二大最常见的原发性恶性骨肿瘤。尽管在过去几十年中,人们对肿瘤生物学的了解呈指数级增长,但手术切除仍然是治疗这些肿瘤的金标准,而放疗和分化化疗无法充分控制癌症。对 CHS 的深入分子表征揭示了与上皮来源的肿瘤相比的显著差异。从遗传学上讲,CHS 是异质性的,但没有定义 CHS 的特征性突变,然而,IDH1 和 IDH2 突变很常见。血管减少、胶原蛋白、蛋白聚糖和透明质酸的细胞外基质组成为肿瘤抑制免疫细胞创造了机械屏障。相对较低的增殖率、MDR-1 表达和酸性肿瘤微环境进一步限制了 CHS 的治疗选择。 CHS 治疗的未来进展取决于对 CHS 的进一步表征,特别是肿瘤免疫微环境,以便改进和更好地针对性地治疗。
1 柑橘研究中心“Sylvio Moreira” - 农学研究所 (IAC),Cordeiro ´ polis,巴西,2 生物研究所,坎皮纳斯州立大学 (Unicamp),坎皮纳斯,巴西,3 甘蔗研究中心 - 农学研究所 (IAC),里贝朗普雷图,巴西,4 里贝朗普雷图医学院,圣保罗大学 (USP),里贝朗普雷图,巴西,5 坎皮纳斯农学研究所 (IAC) 咖啡中心,坎皮纳斯,巴西,6 Embrapa 咖啡,巴西农业研究公司,巴西利亚,联邦区,巴西,7 生物学系,哲学、科学与文学学院,圣保罗大学 (USP),里贝朗普雷图,巴西,8 遗传学系,路易斯·德·凯罗斯农业学院 (ESALQ),圣保罗大学 (USP),皮拉西卡巴,巴西
本指南中的建议代表了尼斯的观点,在仔细考虑可用的证据后到达。在行使判断力时,希望卫生专业人员将此指南充分考虑到患者的个人需求,偏好和价值观。在本指南中应用建议是由卫生专业人员及其患者酌情决定的,并且不超越医疗保健专业人员的责任,以便与患者和/或其护理人员或监护人或监护人协商,以做出适合个人患者情况的决定。
活细胞需要能量,有些细胞比其他细胞需要更多能量。有些细胞的代谢率在几秒钟内从最小变为最大,而有些细胞则是无底洞,需要无节制地持续供应能量。能量底物和氧气的供应以及代谢废物的清除是通过复杂的血管网络来维持的,富含葡萄糖的血浆和充满氧气的红细胞 (RBC) 就是通过血管网络运输的。能量代谢的变化是诊断和监测组织疾病的常用指标,这一事实进一步强调了深入了解能量供应的重要性。大脑也不例外,但它有许多特殊功能和未解之谜。能量需求大约比身体每体积的平均能量需求高出一个数量级。最重要的是,由于大脑的能量储存能力有限,因此必须持续供应氧气和葡萄糖。供应中断几分钟就会对脑细胞造成不可逆转的损害。因此,大脑使用复杂的调节系统来控制其能量供应,该系统涉及壁细胞以及神经元和神经胶质细胞。更清楚地了解单个血管和整个脉管系统水平的血流变化对于揭示这个相互关联的系统如何协调其适应性至关重要。在 PNAS 中,Meng 等人 (1) 介绍了一种强大的超快速方法来改善微血管网络中脑血流的体内测量,这将大大提高双光子显微镜在量化微血管灌注方面的适用性。尽管自 19 世纪末以来我们就知道大脑会局部调节血流以满足局部能量需求的增加 (2, 3),但潜在的血液动力学过程以及细胞间和细胞内的信号通路仍然很大程度上未被发现(有关最近的综述,请参阅参考文献 4 和 5)。并且,在当前背景下需要强调的是,允许以高空间和时间分辨率测量血流的方法有限,但它们对于产生对血液调节微血管方面的新见解至关重要。由于其重要性,研究人员不断开发和应用各种方法来测量脑血流。这些方法基于不同的模式,例如放射性标记扩散化合物、氢扩散和微电极技术、磁共振成像、光谱、光学相干断层扫描、激光散斑成像,以及最近的聚焦超声和光声成像。其中一些方法已达到黄金标准地位,而其他方法则从地图上消失了。1998 年,Kleinfeld 等人 (6) 引入双光子显微镜来追踪单个红细胞。在接受静脉注射荧光葡聚糖以染色血浆的麻醉小鼠中,通过毛细血管短段的千赫兹线扫描来量化位移
尽管神经辐射场 (NeRF) 在图像新视图合成 (NVS) 方面取得了成功,但 LiDAR NVS 仍然基本上未被探索。以前的 LiDAR NVS 方法采用了与图像 NVS 方法的简单转变,同时忽略了 LiDAR 点云的动态特性和大规模重建问题。鉴于此,我们提出了 LiDAR4D,这是一个可微分的 LiDAR 专用框架,用于新颖的时空 LiDAR 视图合成。考虑到稀疏性和大规模特性,我们设计了一种结合多平面和网格特征的 4D 混合表示,以由粗到细的方式实现有效重建。此外,我们引入了从点云衍生的几何约束来提高时间一致性。对于 LiDAR 点云的真实合成,我们结合了光线丢弃概率的全局优化来保留跨区域模式。在 KITTI-360 和 NuScenes 数据集上进行的大量实验证明了我们的方法在实现几何感知和时间一致的动态重建方面具有优越性。代码可在 https://github.com/ispc-lab/LiDAR4D 获得。
我们介绍了CGAPOSENET+GCAN,它通过使用几何Clifford代数网络(GCAN)增强了CGAPOSENET,这是相机姿势回归的架构。添加GCAN,我们仅从RGB图像中获得了相机姿势回归的几何感知管道。cgaposenet使用Clifford几何代数将四元组和翻译向量统一为单个数学对象,即电动机,可用于独特地描述相机姿势。cgaposenet可以在其他方法中获得综合结果,而无需调查损失功能或有关场景的其他信息,例如3D点云,这可能并不总是可用。cgaposenet就像文献中的几种方法一样,只学会了预测运动系数,并且没有意识到预测位于其几何含义的数学空间。通过利用几何深度学习的最新进展,我们从GCAN上修改了CGAPOSENET:从InceptionV3背骨中获得与摄像机框架相关的可能的运动系数的建议,然后通过在G 4,0中使用的一组层来,将它们通过单个电动机为单个电动机。网络的工作是几何意识,具有多活性价值in-
van der waals异质结构中的Moiré超级晶格代表了高度可调的量子系统,在多体模型和设备应用中都引起了极大的兴趣。然而,在室温下,Moiré电位对光物质相互作用的影响在很大程度上仍然没有。在我们的研究中,我们证明了MOS 2 /WSE 2中的Moiré潜力促进了室温下层间激子(IX)的定位。通过执行反射对比光谱,我们证明了原子力显微镜实验支持的原子重建在修饰内部激子中的重要性。降低扭转角时,我们观察到IX寿命会更长,并且发光增强,表明诸如缺陷之类的非辐射衰减通道被Moiré电位抑制。此外,通过将Moiré超晶格与硅单模腔的整合,我们发现,使用Moiré捕获的IXS的设备显示出明显较低的阈值,与利用DelaCalized IXS的设备相比,较小的一个数量级。这些发现不仅鼓励在升高温度下在Moiré超晶格中探索多体物理学,而且还为利用光子和光电应用中的这些人工量子材料铺平了道路。
心电图(ECG)是一种捕获心脏活动的电测量,是诊断心血管疾病(CVD)的金标准。但是,由于ECG需要使用用户参与,因此不可避免地进行心脏监测。相比之下,光电学(PPG)提供了易于收集的数据,但其精度有限限制了其临床用法。为了确定这两个信号的优势,最近的研究不适合将PPG信号重新构成到ECG的各种深度学习技术;但是,缺乏文本信息以及降低噪声生物医学信号的能力最终会限制模型的影响。在这项研究中,我们提出了一种基于变压器的新型体系结构,可从PPG重建ECG,并将PPG和重建的ECG与CVD检测的多种方式相结合。此方法是第一次在生物医学波形重构上进行了变压器序列到序列转换,并结合了PPG和ECG的优势。我们还创建了基于斑块的注意(SPA),这是一种效率方法,用于编码/解码生物医学波形。通过获取各种序列长度并捕获交叉点连接,SPA最大程度地提高了本地特征和全局上下文反复的信号操作。所提出的体系结构在BIDMC数据库上生成了0.29 RMSE的状态性能,以重新构建PPG到ECG,超过了先前的研究。我们还在模拟III数据集上评估了该模型,在CVD检测中达到了95.9%的精度,并在PPG-BP数据集中评估了该模型,在相关的CVD糖尿病检测中达到了75.9%的精度,表明其一般能力。作为一种概念证明,一种名为Pearl(原型)的耳环可穿戴式可穿戴,旨在扩大护理点(POC)医疗保健系统。
