摘要 公共部门采用人工智能 (AI) 有可能改善服务交付。然而,与人工智能相关的风险很大,公民的担忧已经停止了多项人工智能计划。在本文中,我们报告了一项关于挪威公民对公共服务中使用人工智能的态度的实证研究的结果。我们发现公民普遍持积极态度,并确定了三个促成这一结果的因素:a) 对政府的高度信任;b) 人类参与所带来的保证;c) 对流程、用于人工智能模型的数据以及模型内部运作的透明度。我们通过社会契约理论的视角来解释这些发现,并展示了人工智能在公共服务中的引入如何受社会契约权力动态的影响。我们的研究通过突出政府与公民的关系为研究做出了贡献,并对公共部门的人工智能实践产生了影响。
认识到这一点,原子能机构组织了多场活动,重点关注人工智能在先进工厂设计、施工优化和运行效率等领域的应用。2024 年 3 月,原子能机构组织了“人工智能解决方案在核电行业的部署:考虑和指导”技术会议,重点关注有意在核电站部署人工智能的成员国的实施考虑。与此同时,原子能机构在普渡大学建立了首个核电应用人工智能合作中心。该中心将支持原子能机构在核电人工智能方面的知识共享、进步和创新计划活动,以实现人工智能的最佳整合,特别是为了优化核电站的设计、运行和维护。
尽管拉丁美洲和加勒比地区 (LAC) 在过去 20 年里没有发生过国家间武装冲突,但暴力、政变、侵犯人权以及非法武装团体的存在继续对该地区的和平与安全构成重大挑战。随着联合国将注意力集中在为所有人建立一个开放、自由、安全和以人为本的数字化未来,包括最近制定的全球数字契约 (GDC) ,拉丁美洲和加勒比地区的和平建设者正在开拓性地探索如何利用人工智能 (AI) 和开源情报 (OSINT) 以本地化、包容和冲突敏感的方式支持建设和平和预防冲突 1 。 ___________________________________________________________________________
个性化医疗代表着一种范式转变,从传统的“一刀切”方法转变为考虑个人遗传、环境和生活方式因素的更具针对性的医疗模式。本文探讨了人工智能 (AI) 与个性化药物治疗的整合,重点介绍了 AI 技术如何增强治疗计划的定制化。AI 能够分析大型复杂数据集(包括基因图谱、临床病史和生活方式信息),从而实现更精确的药物选择、剂量优化和结果预测。本文探讨了 AI 对个性化医疗的关键贡献领域,包括基因数据分析、多组学整合、预测模型和实时治疗调整。它还讨论了 AI 在提高治疗效果、减少反复试验方法和提高患者满意度方面的优势。然而,AI 的整合带来了一些挑战,例如数据隐私问题、系统兼容性需求以及解决道德问题。展望未来,本文概述了人工智能驱动的个性化医疗的未来趋势,包括人工智能技术的进步、个性化护理的扩展以涵盖更广泛的数据源,以及跨学科合作对推进研究的重要性。人工智能在个性化医疗中的前景在于它有可能通过提供更有效、个性化的治疗来彻底改变药物治疗,从而提高整体患者护理和治疗效果。
在数字时代,网络威胁变得越来越复杂,需要创新方法来加强安全措施。人工智能 (AI) 已成为网络安全领域的强大工具,在威胁检测、异常检测和响应自动化方面提供高级功能。本文概述了网络安全中的人工智能应用,强调了其在降低风险和加强防御机制方面的作用。机器学习、深度学习和自然语言处理等人工智能技术使安全系统能够实时分析大量数据,识别出表明恶意活动的模式。通过利用人工智能驱动的算法,网络安全平台可以在网络威胁造成重大损害之前主动检测和消除它们。此外,人工智能还可以实现事件响应过程的自动化,缩短响应时间并最大限度地减少安全漏洞的影响。来自领先网络安全公司的案例研究是研究不可或缺的一部分,展示了人工智能驱动的解决方案在保护关键基础设施免受网络威胁方面的实际实施。这项研究的重点是通过利用人工智能技术来抵御网络攻击和保护敏感数据资产。
这项理论研究探讨了翻译研究与人工智能(AI)之间的共生关系,强调了这两个领域之间合作的重要性。该研究探讨了将人工智能融入翻译应用程序的潜力,以提高翻译效率、克服语言障碍并扩大信息获取渠道。从这个角度来看,该研究探讨了一些重要的伦理问题,例如人类专业知识在翻译研究中人工智能整合中的作用、翻译的准确性和文化适宜性以及人工智能对劳动力的影响。该研究强调了将人工智能相关主题纳入翻译研究(或口译和翻译)课程的重要性,提倡促进学者和人工智能开发人员之间的合作研究项目,并认为人工智能比其本身更复杂。 IQ(智商)和 EQ(它提请人们注意缩小个人能力(情商水平/商数)之间的差距。翻译研究与人工智能 (AI) 之间的合作可以提供技术上准确且文化敏感的翻译,从而实现满足个人和企业需求的高质量翻译。这种协作可以提高人工智能在翻译活动中的质量和有效性,从而产生更可靠、更合适的翻译。因此,本研究强调了翻译研究与人工智能合作的重要性,并提请关注提高翻译服务质量和鼓励文化敏感性翻译传播等问题。
1 研讨会于 2023 年 7 月在阿姆斯特丹大学举行。更全面的建议版本将在即将发表的文章中发表。我们感谢各位参与者在研讨会期间和之后的宝贵意见(参加研讨会并不等于认可下文列出的所有建议):Bettina Berendt 博士(柏林工业大学互联网与社会教授)、Ian Brown 博士(里约热内卢热图利奥·瓦尔加斯基金会法学院技术与社会中心客座教授、顾问)、Nick Diakopoulos 博士(西北大学传播学和计算机科学教授(特聘))、Tim de Jonge(拉德堡德大学博士候选人)、Christina Elmer(多特蒙德大学数字新闻/数据新闻教授)、Natali Helberger 博士(阿姆斯特丹大学杰出法学与数字技术大学教授)、Clara Helming(AlgorithmWatch 高级政策与宣传经理)、Karolina Iwańska(欧洲非营利组织中心数字公民空间顾问)法)、Frauke Kreuter 博士(慕尼黑大学统计与数据科学教授)、Laurens Naudts 博士(阿姆斯特丹大学法学博士后研究员)、Liliane Obrecht(巴塞尔大学法学博士生)、des 博士。 Angela Müller(AlgorithmWatch 政策与宣传主管)、Estelle Pannatier(AlgorithmWatch CH 政策与宣传经理)、Stanislaw Piasecki 博士(阿姆斯特丹大学法学博士后研究员)、João Quintais 博士(阿姆斯特丹大学信息法助理教授)、Matthias Spielkamp(AlgorithmWatch 创始人兼执行董事)、Daniel Oberski 博士(乌得勒支大学健康数据科学教授)、Ot van Daalen 博士(律师;阿姆斯特丹大学信息法讲师和研究员)、Kilian Vieth-Ditlmann(AlgorithmWatch 政策与宣传副团队负责人)、Sophie Weerts 博士(洛桑大学公法副教授)、Frederik Zuiderveen Borgesius 博士(拉德堡德大学 ICT 和法律教授)。此外,我们感谢以下专家对研讨会成果的宝贵书面反馈:Nikolett Aszódi(AlgorithmWatch 政策与宣传经理)、Paul Keller(Open Future 政策总监)和 Alex Tarkowski(Open Future 战略总监)。
• 指导意见,包括可用于开发和使用人工智能解决方案的模板和范例。通过这种方式,丹麦数据保护局将试图阐明,目前已经适用于个人数据处理的大量要求必须如何应用于人工智能的使用。 • 绘制整个公共部门人工智能解决方案的使用情况,以便丹麦数据保护局最终能够跟踪人工智能使用时数据保护要求的遵守情况。 丹麦数据保护局之所以关注丹麦的公共部门,是因为公共行政部门处理的数据数量和类型,就像公民在选择公共当局如何处理他们的个人数据方面没有自由一样,私营公司也是如此。最后,公共当局通常会履行对公民至关重要的职能,例如支付公共福利和提供家庭和医疗保健服务。
随着各国政府越来越多地探索和投资人工智能和自动决策系统,我们需要采取措施确保这些快速发展的技术在公共服务的特殊环境中得到适当使用。在许多国家,COVID 创造了一个信任度提高的泡沫,这个泡沫可以说已经破灭了,在一个对公共机构前所未有的不信任的时代(但即使在信任度很高的时代),服务速度更快或更具成本效益是不够的。本文为政府系统(技术平台、运营、文化、治理、参与等)提出了建议,这些建议将有助于提高公众对公共机构、政策和服务的信心和信任,同时履行公共部门的特殊义务和责任。