1. 采用人工智能打击犯罪攻击:Emotet 木马是现代恶意软件中最臭名昭著的木马之一,是原型人工智能 (AI) 攻击的典型例子。Emotet 的主要传播方式是垃圾邮件钓鱼,通常通过发票诈骗诱骗用户点击恶意电子邮件附件来实现。Emotet 的作者最近在其木马中添加了一个新模块,用于窃取受感染受害者的电子邮件数据。尽管这种电子邮件泄露功能的来源尚未透露,但最近观察到 Emotet 在全球范围内发送结构化钓鱼电子邮件。这意味着它可以快速插入现有电子邮件线程并强烈敦促受害者点击恶意附件,该附件随后出现在最终的恶意电子邮件中。
Aritra Mandal 是 eBay 搜索团队的应用研究员。他专注于搜索质量,并利用 AI/ML、结构化数据和知识图谱来改进为 eBay 市场提供支持的搜索引擎。Aritra 获得了伯拉理工学院的计算机科学学士学位以及印第安纳大学-普渡大学印第安纳波利斯分校的计算机和信息科学硕士学位。
马里兰州克朗斯维尔:今天,马里兰州信息技术部 (DoIT) 和马里兰州人工智能分部宣布,他们已向马里兰州议会提交了人工智能支持战略和人工智能研究路线图(AI 路线图)。该路线图列出了该州将实施的 5 部分战略,以加快在全州安全实施人工智能和机器学习技术。它还概述了该州将在 12 个关键领域开展的具体研究,包括促进经济发展、提高州劳动力的生产率以及为当地学校系统制定政策。“生成人工智能正以前所未有的速度发展,可能影响马里兰州人民生活的几乎每个方面,”DoIT 部长兼人工智能分部主席 Katie Savage 表示。“人工智能路线图为马里兰州在 2025 年的发展规划了路线图,帮助其加快人工智能采用的步伐,同时考虑到马里兰州独特的资产、机遇和风险。我们准备以切实可行的方式采用这项技术,使我们的国家更加安全、更具竞争力、更高效。”
在快速发展的人工智能 (AI) 领域,组织正在积极探索其变革能力。人工智能不可抗拒地挂在每个人嘴边——学者、公司、政策制定者和政府。可以说,人工智能越来越重要,并且越来越依赖我们生活的方方面面,但更广泛地说,它对社会的影响更大。特别是,企业对人工智能的兴趣已经深深地影响了投资决策,尽管必须注意,这并不是一个完全新的现象,至少当我们试图将商业智能的起源历史化时,它早在生成和分析人工智能出现之前就已扎根。此外,我们还看到政治实体(在这个意义上是国家)将人工智能纳入其投资战略和监管框架的能力可能带来的结果。同样,可以说,人工智能给私营和公共部门领域带来了不可否认的变革性影响,并且可能带来这种影响。
鉴于人工智能开发人员在确保人工智能系统、其成果和此类系统用户的责任方面发挥着重要作用,我们需要他们采取负责任、合乎道德和负责任的方法。因此,我们建议这些参与者参与旨在产生负责任的人工智能设计和使用的政策制定过程。根据我们的实证研究结果,我们提出了几项建议,以弥补当前在追求负责任的人工智能时将道德原则、认证标准和解释方法作为问责机制所发现的缺陷。我们希望这些建议能够有助于讨论如何在实践中确保问责制,同时兼顾开发人员、研究人员和公众的观点。
以及学生数字化社会化的特征,作为制定社会数字化条件下普通中等教育机构教育与发展环境模型社会组成部分设计原则的指导方针。在这一探索中,我们还考虑了设计数字社会教科书的重要组成部分以及针对新方法论原则的教育过程的有针对性的研究程序,不仅使用我们在另一篇文章中披露的案例研究技术(T.F. Alekseenko,2022),而且还使用 Google 表单作为最具社交可访问性的(无论老师和学生的位置和距离如何)和民主的(提供独立选择答案、反思动机、处理客观性以及经验收集信息的必要保密性)。开展各部分的工具和程序也符合面向社会的未来学校教育和发展数字环境模型的补充因素的思想,旨在克服不仅在战争期间而且在战后乌克兰重建中的教育损失和差距。使用来源问卷和诊断工具 - Google Forms(2023 年 10 月 19 日)。 https://sites.google.com/view/it-teachers/google-forms
AAbstr bstract act.. 在过去十年中,机器学习越来越吸引多个科学领域的研究人员,特别是在增材制造领域。同时,这项技术对许多研究人员来说仍然是一种黑箱技术。事实上,它允许获得新的见解,以克服传统方法(例如有限元方法)的局限性,并考虑制造过程中发生的多物理复杂现象。这项工作提出了一项全面的研究,用于实施机器学习技术(人工神经网络),以预测 316L 不锈钢和碳化钨直接能量沉积过程中的热场演变。该框架由有限元热模型和神经网络组成。还研究了隐藏层数和每层节点数的影响。结果表明,基于 3 或 4 个隐藏层和整流线性单元作为激活函数的架构可以获得高保真度预测,准确率超过 99%。还强调了所选架构对模型准确性和 CPU 使用率的影响。所提出的框架可用于预测模拟多层沉积时的热场。
研究指南,Acharya Nagarjuna 大学。摘要 对于所有规模的组织和 ISP,有史以来最具破坏性的攻击都是 DDoS 攻击 (分布式拒绝服务)。由于 DDoS 出租服务的可用性提高,数十亿不安全的僵尸网络和 IoT 设备的产生导致 DDoS 攻击增加。这些 DDoS 攻击的频率、规模和复杂程度不断增加。由于这些攻击日益智能化以及 IDS 的逃避,包括清理和基于签名的检测在内的传统方法受到了挑战。由于攻击规模主要集中在组织上,下一代安全技术无法跟上步伐。由于对人为干预的要求较高,基于异常的检测在误报和准确率方面存在各种限制。本文利用机器学习(ML)模型,基于开放的CICIDS2017数据集进行了DDoS异常检测。但是,使用该ML模型并精心调整超参数可以达到最大准确率。关键词:DDoS攻击,异常检测,机器学习,入侵检测系统,准确性。
1. 明确定义的主题词汇或分类 2. 足够且高质量的培训和评估数据 3. 具备必要技能的员工 [下一张幻灯片] 4. 计算资源(有时从笔记本电脑到大型服务器)
一份新报告称,NDIA 正迅速成长为战略领导者,在云计算、量子计算和人工智能超级计算领域取得了令人兴奋的创新。这并不奇怪,因为超过 90% 的印度企业已经在使用 AI/GenAI 技术。然而,挑战在于实施水平,因为只有 2% 的公司正在广泛整合这些技术,德勤技术趋势 2024:印度视角报告指出。GenAI 确实有潜力加速印度的数字化转型,企业纷纷战略性地投资新时代技术,通过适应不断变化的市场动态来实现利益最大化。如果 2023 年对 GenAI 的需求和兴趣显著,那么今年预计将专注于确定最佳投资领域和评估过去的投资。