上下文或问题:未来的气候场景对可持续棉花生产提出了重大挑战。制定有效的适应策略对于减轻这些威胁至关重要。客观或研究问题:本研究评估了气候变化对不同耕作系统和氮施用率下棉质棉布产量的影响,以识别潜在的适应策略。方法:在田纳西州的杰克逊(Jackson)进行了长期的棉花场实验(39年),其中有两个耕作系统(无耕种和常规耕作)和四个氮(N)施用速率(0、33、67和101 kg ha⁻⁻)。使用两种代表性浓度途径(RCP4.5和RCP8.5)和五个全球循环模型(GCMS),用于模拟2025年至2057年的棉质棉绒产量,涵盖接近任期(2025 - 2035),中期(2036 - 2046),以及2077.207-207-207-207-207-207-207-207-207-207-结果:在所有情况下,在两个耕作系统下,氮的施用率都会增加对棉质棉绒产量产生积极影响。然而,无耕作始终超过常规耕作,特别是在RCP8.5下,表明其在不断变化的气候中的潜在益处。模型预测表明,虽然观察到初始收益率,但随着气候影响加剧,这些预期可能会随着时间而减少。在RCP4.5下,近期产量增加,但在中期和遥远的期间显示趋势下降。在RCP8.5下,尽管最初的韧性,所有模型都预测,中期和远程的产量显着下降,MRI-CGCM3模型中最明显的降低。结论:这项研究强调了自适应策略的重要性,例如无耕种在减轻气候对棉花产量的负面影响中的重要性。的含义或意义:实施无耕种实践与优化的氮管理相结合可以在未来的气候情况下提高棉花生产力,尤其是在RCP8.5
对农业实验站田间采集的3,203幅病害数据图像进行了诊断,准确率较高,为79~99%,但对于导致叶片表面出现褐变症状的白粉病,由于数据量较少,准确率较低,仅为25%(表2)。对2,275张虫害图像数据进行了诊断。结果显示,蓟马(果实)、蚜虫(果实)、粉虱(叶背)在图像中拍摄到健康区域时诊断结果为健康的可能性较大,准确率较低。但其他虫害的准确率较高,在81%~100%之间(表3)。现场诊断结果与农业实验站现场诊断结果的准确率相似(未显示数据)。当检查使用智能手机诊断应用程序在现场拍摄的 632 张病害照片和 179 张虫害照片时,准确率大致相同(表 4,图 1)。对于推广讲师对诊断应用程序的可用性,应用程序的评价普遍良好,具有操作流程简单易懂、图标大且易于使用等特点。
在欧盟和世界各地,植物生长促进微生物 (PGPM) 和其他生物制剂(如土壤改良剂、生物肥料、植物生物刺激剂、生物防治剂或生物农药)的市场正在蓬勃发展。微生物制剂在这一发展中占有重要地位。此类产品的使用通常以促进可持续农业实践为宣传目标,承诺通过提高作物生长和产量,提供替代品或替代品以减少农业对危险农用化学品的依赖。与注册的微生物植物保护产品不同,在欧盟作为土壤改良剂或植物生物刺激剂销售的 PGPM 在田间条件下无需严格证明最低功效水平。制造商只需确保这些产品不会对人类、动物或植物的健康、安全或环境造成不可接受的风险。目前尚无与 EPPO 标准(欧洲和地中海植物保护组织)相当的统一指南来测试田间试验的功效。本文试图填补这一空白。它提出了 PGPM 田间试验设计和实施指南,以及数据收集和评估类型和范围的建议。对从文献中选出的研究论文进行了评估,以分析是否以及在多大程度上已经满足了要求。大多数论文都有明确的实验设计,随后进行了适当的数据评估。常见的缺陷是测试环境和作物种类数量少、场地和农艺管理描述不足以及土壤湿度和温度数据缺失。使用建议的标准被认为可以提高测试微生物产品的表达能力。
田间收获期间的卫生 收获储存容器在使用前要清洗。 干净的容器在田间使用前要保持盖好。 收获设备保持清洁并处于良好的工作状态。 收获的农产品不会接触粪便、非饮用水、卫生条件差和/或靴子和衣服脏的工人以及不洁的包装或储存容器。 禁止农场牲畜(包括家禽或宠物)进入种植和收获农作物的田地或果园。收获期间的良好卫生习惯有助于降低新鲜农产品被微生物污染的风险。土壤、肥料、收获设备、水、工人、宠物和害虫都可能是导致食源性疾病的有害微生物的来源。因此,种植者必须采取措施,防止这些微生物来源污染农产品。良好的卫生习惯包括清洁和消毒所有与食品接触的表面、鼓励工人讲究卫生并进行培训以及让动物、宠物和其他野兽远离田地、果园和包装厂。我们所说的“食品接触表面”、“清洁”和“消毒”是什么意思? 食品接触表面是指在收获、包装或运输期间与新鲜农产品接触的表面。 清洁是指用肥皂或洗涤剂清洗和擦洗食品接触表面以去除污垢和残留物,然后用干净的饮用水冲洗。 消毒是指用可以杀死大多数微生物的消毒溶液处理食品接触表面。必须先清洁表面才能进行消毒。 消毒溶液是按照制造商的说明将少量消毒剂与饮用水混合而制成的。 消毒剂是一种用于杀死微生物的化合物。最常用的是氯漂白剂和季铵化合物。走遍您的工厂,检查是否存在以下潜在食品安全危害的迹象: 田地里的宠物、牲畜、家禽或野生动物 田地和果园里的人类或动物粪便 生病或不卫生的工人 肮脏的收获容器 满载泥土或粪便的农产品 破损和肮脏的收获设备
摘要:通过灰尘事件对生物溶质的远距离运输会显着影响大气,生物圈和人际的生态和气象网络。生物素不仅会引起严重的公共卫生风险,而且还充当有效的冰核,可在水文周期中诱导云形成和降水。为了建立生物溶质的风险管理对地球系统的影响,必须在不同的环境条件下对生物溶质进行大规模研究。为此,开展了尘埃– bioaerosol(Dubi)现场运动,以调查2016年至2021年东亚39个地点的约950个样品,以调查生物溶质的分布。使用荧光显微镜观测和高通量DNA测序进一步分析了生物溶质溶胶的浓度和社区结构,并将这些因素与PM 10和诸如PM 10和ARISISION的环境因素进行了比较。结果表明,旱地位点的微生物浓度在统计学上高于湿地部位的微生物浓度,而在旱地,微生物与当时的粒子比的比率高于潮湿区域。每微克细胞PM 10的微生物细胞减少,PM 10增加。每个位点的空气颗粒比例随季节的变化差异很大。在旱地中,空气传播细菌的丰富性和多样性明显高于半干旱地区,而社区结构在所有采样地点之间都是稳定的。杜比现场运动提高了我们对东亚尘埃运输途径的生物溶质特征变化的理解,以及在气候变暖趋势下的生物溶质质量变化,支持降低公共卫生风险的努力。
,我们为具有有限键尺寸的基质产品状态(MPS)的重新归一化流量设置了有效的现场理论公式,重点是表现出有限的纠缠缩放的系统,接近近形不变的临界固定点。我们表明,有限的MPS键尺寸χ等同于将相关操作员的扰动引入固定点哈密顿式。该机制的指纹编码在χ无依赖性的通用转移矩阵的间隙比中,这与未受干扰的保形场理论(CFT)预测的指纹不同。这种现象定义了一个重新归一化的自共同点,其中相关的耦合常数由于两个效应的平衡而停止流动;当增加χ时,由相关长度ξ(χ)设定的红外量表会增加,而晶格尺度下扰动的强度降低。存在自我征集点的存在不会改变有限输入缩放假设的有效性,因为自我一致点位于距离临界固定点的有限距离,远方属于CFT的缩放机构内部。我们用有效晶状体模型的ISING模型和密度矩阵重新归一化组(DMRG)模拟的精确解的数值证据证实了这一框架。
本报告调查了使用数据驱动方法的使用,即现场倒置和机器学习(FIML),以改善常规的湍流模型,例如Spalart-Allmaras模型和Menter SST K-ω模型。使用有限的训练数据使用基于ML的方法来产生可推广到大量流量配置的校正的关键方面之一是设计适当的“功能”(输入ML模型)。基于FIML方法的指导的模型以分析形式介绍。在本报告的末尾列出了本研究中已经进行了实验的其他功能列表。尽管这些校正中没有使用这些,但它们被包括在当前工作中使用的完整过程。
1美国田纳西大学动物科学系,美国田纳西州诺克斯维尔大学,美国2个动物科学系,南达科他州立大学,美国SD,美国SD的布鲁金斯,3号,美国阿肯色州州立大学3号农业学院美国德克萨斯州,美国6个动物科学司,密苏里大学,哥伦比亚,密苏里州,美国,7动物与乳制品科学系,威斯康星大学,威斯康星大学,威斯康星州麦迪逊大学,美国威斯康星州麦迪逊市,8 Roman L. Hruska US肉类动物动物研究中心