摘要:我们介绍了量子细胞自动机的单粒子扇区,即量子步行,在简单的动态三角2-歧管上。三角剖分通过沃克密度本身引起的Pachner移动改变,使表面可以转变为任何拓扑等效的。该模型扩展了一位作者在先前工作中引入的三角网格上的量子步行,其时空极限恢复了(2+1)维度中的dirac方程。数值模拟表明,三角形和局部曲率的数量随着tαE -βt 2的形式生长,其中α和β参数化的几何形状在助行器的局部密度上发生了变化,从长远来看,出现了。最后,我们还证明了沃克的全局行为在时空随机爆发下保持不变。
我们认为,在最近的几项研究中研究的量子理论结构无法在量子电路的标准框架内得到充分描述。当子系统的组合由希尔伯特空间的直接和与张量积的非平凡混合描述时,情况尤其如此。因此,我们提出了量子电路框架的扩展,由路由线性映射和路由量子电路给出。我们证明这个新框架允许在电路图方面进行一致且直观的图形表示,适用于纯量子理论和混合量子理论,并在几种情况下举例说明了它的使用,包括量子信道的叠加和幺正的因果分解。我们表明,我们的框架包含了 Lorenz 和 Barrett 的“扩展电路图” [ arXiv:2001.07774 (2020)],我们将其作为特例推导出来,赋予它们合理的语义。
本地化是移动机器人技术的关键方面,使机器人能够有效地导航其环境并避免障碍。当前的概率定位方法,例如自适应蒙特卡洛定位(AMCL)算法,是计算密集的,可能会在大图或高分辨率传感器数据中遇到困难。本文探讨了量子计算在机器人技术中的应用,重点是使用Grover的搜索算法来提高移动机器人的本地化效率。我们提出了一种新的方法,可以在2D地图中利用Grover的算法,从而更快,更有效地定位。尽管当前的物理量子计算机存在局限性,但我们的实验结果表明,对经典方法的速度显着,强调了量子计算改善机器人定位的潜力。这项工作弥合了量子计算和机器人技术之间的差距,为机器人定位提供了实用的解决方案,并为未来的量子机器人技术铺平了道路。
传统的电网管理方法不适合应对这种复杂性,但利用 D-Wave 量子计算平台的优化策略可以胜任这项任务。荷兰鹿特丹 Quantum Quants 和海牙荷兰应用科学研究组织 (TNO) 的研究人员最近进行的一项研究表明,量子和经典计算方法的结合为 21 世纪能源基础设施的高效设计和管理提供了强大且可扩展的解决方案。
《近期研究评论》杂志,2024 年 6 月,第 3 卷,第 1 期,第 113-124 页 DOI:https://doi.org/10.36548/rrrj.2024.1.008 113 © 2024 Inventive Research Organization。这是一篇根据知识共享署名-非商业性国际 (CC BY-NC 4.0) 许可协议开放获取的文章
单光子构成量子科学和技术的主要平台:它们在未来的量子互联网1中携带量子信息在延长的距离上,并且可以在高级光子电路中操纵,从而实现可伸缩的光子量子计算2,3。量子光子学的主要挑战是如何生成先进的纠缠资源状态和有效的光 - 物质接口构成路径4、5。在这里,我们利用单个量子发射极与纳米量波导的效率和相干耦合,以实现单光子波键盘之间的量子非线性相互作用。这种固有的多模量子系统构成了量子光学的新研究边界6。我们证明了用另一个光子对光子的控制,并在实验上揭示了由量子发射极介导的两光子相互作用的动力响应,并表明诱导的量子相关性由脉冲持续时间控制。这项工作将为调整复杂的光子量子资源状态开放新途径。
