甲醇协会 (MI) 是甲醇行业的全球贸易协会,代表着世界领先的生产商、分销商和技术公司。MI 成立于 1989 年,总部位于华盛顿特区,目前在华盛顿特区、北京、布鲁塞尔、德里和新加坡设有五个办事处,代表其成员。MI 是甲醇行业的代言人,代表会员公司与世界各地的政府和企业沟通,促进行业的可持续发展。MI 致力于推动甲醇作为清洁燃料在能源相关应用(如陆地和海上运输、发电、燃料电池、工业锅炉和炉灶)中的应用。MI 还支持可持续和可再生工艺,以生产碳中性的甲醇化学品和燃料。www.methanol.org
直接甲醇燃料电池(DMFC)是以甲醇 和空气为原料直接生成电力。由于是化 学反应发电,噪音低,不产生大气污染 物质。用于通信设备等的长时间(72小 时以上)备份电源。
摘要:为了实现气候目标,全球必须摆脱化石燃料。对于电气化不切实际的行业,找到可持续的能源载体至关重要。可再生甲醇因其多种可持续的生产方法而被广泛认为是一种有前途的燃料,可用于为航运、货运、农业和工业机械等重型应用提供动力。虽然目前的技术努力主要集中在航运领域的双燃料发动机上,但未来的进展取决于使用可再生甲醇的单一燃料解决方案,以实现重型领域的净零目标。本综述研究了使甲醇成为重型应用唯一燃料的技术的研究现状。文献中出现了三个主要类别:火花点火、压缩点火和预燃室系统。分析了每个概念的运行原理和效率、稳定性和排放特征。火花点火概念是一种成熟度高、经济高效的解决方案。然而,它们面临着爆震问题的限制,限制了较大孔径的功率输出。压缩点火概念本质上不会受到末端气体自燃的影响,但由于甲醇十六烷值低,因此会遇到与可燃性相关的挑战。尽管如此,仍存在各种实现甲醇自燃的方法。要在所有负载点实现稳定燃烧,需要结合多种技术。预燃室技术尽管成熟度较低,但有望通过充当分布式点火源来延长爆震极限并提高效率。此外,混合控制预燃室概念显示出消除爆震以及相关尺寸和功率限制的潜力。本评论最后比较了每种技术并确定了未来研究的差距。
纳米颗粒和苯授精方法。对水甲醇提取物的LC -ESI -MS/MS分析显示,长石酸(278.150 µg L -1)和Luteolin(112.214 µg L -1)含有高含量。乙酸乙酯馏分的主要成分是食道酸(1502.228 µg l -1),epigallocatechin(1204.629 µg L -1)和儿茶素(410.925 µg L -1)。在N-丁醇馏分中,shikimic Acid(2425.644 µg L -1)和长石酸(220.417 µg L -1)是主要成分。基于抗氧化剂结果,提取物和馏分表现出显着的抗氧化活性。最有效的是乙酸乙酯馏分,在所有使用的测试中,IC 50值低于10 µg mL -1。关于抑制胆碱酯酶,水甲醇提取物对乙酰胆碱酯酶(IC 50 = 22.82 µg mL -1)和丁乙烯酯酶表现出有趣的抑制作用(IC 50 = 10.70 µg ml -1)。提取物和分数显示出对α淀粉酶和α葡萄糖苷酶的显着抑制作用,IC 50分别为10.67至28.55 µg mL -1和3.45至5.05 µg mL -1。对接研究表明,长石酸对α-糖苷酶的结合能表现出最有利的结合能。相反,儿茶素在ACHE,BCHE和α-淀粉酶方面表现出了出色的结合能。总而言之,该物种表现出明显的抗氧化能力和酶的抑制作用,这表明其在预防与氧化应激有关的许多疾病中的潜在应用。
本演示文稿使用了 EBITDA、调整后 EBITDA、调整后收入或调整后每股收益和自由现金流等术语。这些项目是非 GAAP 指标,没有 GAAP 规定的任何标准化含义,因此不太可能与其他公司提出的类似指标进行比较。这些指标代表归属于 Methanex Corporation 的金额,并通过排除与特定已识别事件相关的某些项目的影响来计算。请参阅本演示文稿的第 33 张幻灯片以及公司 2023 年年度 MD&A 中的“其他信息 - 非 GAAP 指标”,以在某些情况下与最可比的 GAAP 指标进行对账。
IMO 2020 和 IMO 2050。目前有几个项目正在测试使用氨作为船用燃料。国际作物营养公司 Yara 是主要的氨生产商之一,该公司计划在 2024 年前为改装后的北海补给船提供氨作为船用燃料。此外,一个由日本公司(包括三井和伊藤忠)组成的跨行业联盟正在考虑推出以氨为燃料的商用船,并在日本开发氨供应基础设施,为航运业提供替代船用燃料,以减少温室气体排放。
欧洲能源拥有 25 个市场的战略投资组合,以实现我们的多元化和选择性议程。我们的足迹主要位于低风险的 OECD 市场,其中约 95% 的管道位于 OECD 市场,75% 位于欧盟市场。在这里,我们拥有专业知识和本地能力,并且可以展示在价值链的各个部分或整个价值链中创造价值和获得可观回报的良好记录。总体而言,我们的地理分布覆盖了预计到 2028 年全球可再生能源建设的约 70%(不包括中国)。
已经对使用Kaliandra叶甲醇提取物作为铁金属腐蚀抑制剂的抽象研究进行了研究。本研究的目的是确定在HCl培养基中铁金属抑制过程中浸泡时间,浓度和温度变化中,Kaliandra叶提取物(Calliandra calothyrsus M.)中包含的二级代谢产物和最佳条件。kaliandra叶提取物是通过用甲醇溶剂浸润提取的。使用减少浸泡时间,kaliandra叶提取物的浓度和温度来确定每年的腐蚀速率和抑制效率%的腐蚀测试。结果表明,kaliandra叶甲醇提取物含有二级代谢化合物生物碱,类黄酮,单宁和皂苷。在6天的抑制作用时,获得了HCL腐蚀性培养基上铁金属抑制过程的最佳条件,抑制效率和腐蚀速率值为86.49%和0.00119 mm/年,并以13,000 ppm的浓度和温度为26℃年度和91.61.61.61.61.61.61.61.61.61.61.61.61.61.61.61.61.61.61.61.61.61.61.61.60%。在使用温度变化的浸入中,所使用的温度越高,抑制效率降低和腐蚀速率增加,以使铁金属经历更快的腐蚀。