摘要 — 当氧化层变薄,栅极长度变短时,MOSFET 器件中会出现短沟道效应 (SCE)。本研究的目的是寻找一种新的电介质和栅极材料来取代传统的氧化物二氧化硅 (SiO 2 ) 和多晶硅作为栅极材料。本研究的目的是研究使用不同类型的高 k 电介质材料和锗 (Ge) 作为栅极材料的 MOSFET 的性能。使用 Silvaco TCAD 工具制造和模拟 MOSFET 结构。基于电流-电压 (IV) 特性评估 MOSFET 的整体性能。结果表明,用 HfO 2 和 Ge 作为电介质和栅极材料制造的 MOSFET 具有较高的驱动电流,漏电流比传统 MOSFET 降低了 0.55 倍。因此,与 SiO 2 和多晶硅相比,MOSFET 结构中 HfO 2 和 Ge 的组合具有最佳性能,因为它在缩小器件尺寸时产生较小的漏电流和较小的 V th,从而降低 SCE。
随着移动设备的快速发展,电能存储在固定电网、智能机器人、混合电动汽车等领域受到广泛关注,这些应用场合要求储能系统与元件具有电能充放电速度快、可靠性高、重量轻等特点。1 – 6 柔性电容器因具有柔性、密度低、易集成等特点,在电子电气领域得到广泛的应用。双向拉伸聚丙烯(BOPP)被广泛应用于商业化的柔性储能装置中。然而,由于BOPP的介电常数低(1 kHz时为2),其储能性能(Ue)仅限于1 – 2 J cm 3 @ 660 kV mm 1,这对开发电子设备中的储能元件非常不利。7,8 介电电容器储能是当今最常用的储能材料之一。
心血管疾病仍然是全球的一大负担,三分之一的死亡可归因于该疾病的后果。主要原因是动脉阻塞,而动脉阻塞通常无法检测。植入式医疗设备 (IMD)(如支架和移植物)通常用于重新打开血管,但随着时间的推移,这些设备也会再次阻塞。开发了一种血管生物传感器,可以报告细胞情况,并可安装在支架或移植物上进行远程报告。此外,该设备还设计用于接收可诱导受控细胞死亡(凋亡)的电流。组合诊断和治疗生物传感器将为治疗动脉粥样硬化和中心静脉通路等血管疾病带来变革。在这项工作中,开发了一种基于相同交叉电极 (IDE) 的细胞感应和细胞凋亡系统。结果表明,该设备可扩展,并且通过小型化 IDE,检测灵敏度得到提高。使用频率为 10 kHz 的连续阻抗测量来监测血管平滑肌细胞的凋亡,并使用荧光染料和活细胞成像来追踪细胞死亡率。
显示I ON / I OFF 〜10 5,明显的现场效应移动性〜250 cm 2 V -1 S -1,子阈值swing < / div < / div < / div < / div < / div < / div < / div < / div < / div
有机场效应晶体管 (OFET) 是有机电子电路的核心单元之一,OFET 的性能在很大程度上取决于其介电层的特性。有机聚合物,如聚乙烯醇 (PVA),由于其固有的柔韧性和与其他有机成分的天然兼容性,已成为 OFET 备受关注的介电材料。然而,诸如滞后、高亚阈值摆幅和低有效载流子迁移率等不尽人意的问题仍然大大限制了聚合物介电 OFET 在高速、低压柔性有机电路中的实际应用。这项工作开发了一种使用超临界 CO 2 流体 (SCCO 2 ) 处理 PVA 介电体的新方法,以获得性能卓越的聚合物介电 OFET。 SCCO 2 处理可以完全消除 OFET 传输特性中的滞后现象,同时还可以显著降低器件亚阈值斜率至 0.25 V/dec,并将饱和区载流子迁移率提高至 30.2 cm 2 V − 1 s − 1 ,这两个数字对于柔性聚合物电介质 OFET 来说都是非常可观的。进一步证明,与有机发光二极管 (OLED) 耦合后,SCCO 2 处理的 OFET 能够在快速开关速度下运行良好,这表明通过这种 SCCO 2 方法可以实现聚合物电介质 OFET 的优异开关行为。考虑到 OFET 的广泛和重要应用,我们预见这种 SCCO 2 技术将在有机电子领域具有非常广泛的应用,尤其是对于高刷新率和低压柔性显示设备。
摘要:本文介绍了使用不同高介电常数 (高 k) 栅极介电材料的双栅极 (DG) 和栅极环绕纳米线 (GAA) MOSFET 的电气行为。为了研究高 k 介电材料对 DG 和 GAA 的影响,使用 Atlas Silvaco TCAD 工具模拟器件并确定电气特性。本研究选择的高 k 材料是氮化硅 (Si3N4)、氧化铝 (Al2O3)、氧化锆 (ZrO2) 和氧化铪 (HfO2)。栅极介电材料在设计新型高性能纳米级电气器件方面发挥了重要作用。可以观察到,当接近更高的介电常数值时,导通电流增加,而亚阈值斜率 (SS) 阈值电压 (Vth) 和漏电流减少。可以观察到,与其他模拟介电材料相比,HfO2 对 DG 和 GAA MOSFET 都表现出最佳性能。
摘要本文提出了新开发的先进的超薄光敏电介电膜(PDM),其高分辨率,低CTE和低剩余应力,用于下一代高密度重新分布层(RDL),2.5D Interposer,以及高密度的风扇输出包装应用程序。对于高密度RDL,光敏电介质材料需要具有低CTE才能达到高包装可靠性。材料的CTE为30-35ppm /k。在保持低CTE时,我们成功地证明了5UM厚度中3UM的最小微型视野直径。PDM的固化温度为180 0 C x 60分钟。比目前在行业中使用的大多数高级介电材料低。低温固化过程会导致低压力。,我们通过4英寸晶圆的经经测量测量结果计算了固化的PDM中的残余应力。作为PDM材料在固化过程中的另一个好处,可以将PDM固化在空气烤箱中。大多数先进的照片介电材料都需要在N2烤箱中固化,这是由于防止材料氧化的。我们通过使用半添加过程(SAP)和溅射的Ti/Cu种子层展示了2UM线的铜痕迹,并在PDM上间隔。由于由于低温固化而引起的低CTE和低残余应力,它通过了温度周期测试(1,000个周期),其雏菊链结构在结构中具有400个VIA。可以得出结论,新开发的PDM是一种有前途的介电材料,用于2.5D interposers和Fan-Out Wafer级级别的应用程序,用于高度可靠的高密度重新分布层(RDL)。
基于三波混合的参数放大器是电磁信号处理的基本过程[1],无论是在光学和微波频域中。最近,随着量子信息科学的出现,三波混合为单个光子水平[2,3]的测量提供了一个基本的构建块,在此至关重要的是,非线性混合过程纯粹是消除的。一类重要的参数放大器利用三波混合来通过向下转换较高的频率泵场的转换来扩大传入的信号场。放大过程涉及在角频率下传入的泵photon!p以频率分为传出的信号和怠速光子!s和!i,在哪里进行。p¼!sÞ!i。自非线性光学元件早期以来,就已经知道了经典级别的三波混合过程原则上是可逆的和相位敏感的。在三波混合的情况下,这是最容易看到的,这是通过制作不耗尽的泵近似,从而导致信号和惰轮的线性两端口散射矩阵。通常仅在信号端口的输入中运行非排定副标,从而导致相位呈现相位的放大器,并带有功率增益,G 0。However the S matrix has two eigenvectors corresponding to inputs on both signal and idler port, with reciprocal eigenvalues given approximately by 2 ffiffiffiffiffiffi G 0 p , 1 = 2 ffiffiffiffiffiffi G 0 p , the former corresponding to coherent amplifica- tion of signal and idler with power gain 4 G 0 , and the latter to coherent attenuation (CA).在CA中,信号和惰轮都用正确的相对相施加,并且它们连贯地组合到泵频率,从而导致功率衰减1 = 4 g 0;这是相干扩增的时间转换过程。直到最近,还没有几乎无损的微波放大器,可以通过此简单的矩阵来很好地建模。但是,我们在这里使用的约瑟夫森参数转换器(JPC)几乎是无损的,并且性能限制了量子[5,6]。连贯的衰减和扩增
新颖的电介质材料:打破吉吉尔兹(Gigahertz)障碍罗杰·泰兹(Roger Tietze),日元贷款Nguyen,Mark Bryant,Dave Johnson Huntsman Corporation The The Woodlands,Texas,Dexas,用于许多关键的电子应用,需要比Epox和其他传统材料表现出更好的介电系统,这些介电系统具有更好的电气性能。在当今世界各地开发的高级电信,高速电子和微波设备以及辐射层和其他产品中,制造商依靠Teflon®,Cyanate Esters和Cyanate Ester/Epoxy Coxy Blend等材料来满足其性能要求。但是,这些材料具有缺点,可以使它们在某些苛刻的应用中成本昂贵且难以用作介电。我们有一个活跃的研究计划,可以开发具有低DK/DF特性的新型新型热固性聚合物。本文重点介绍了其中一种材料作为PWB多层的基础树脂的测试。该新系统也可能在本研究范围之外具有应用程序。1.0简介有机聚合物在复合PWB的制造中起着非常重要的作用。在用于构建复杂电子的材料中是环氧树脂,酚类,二甲酰亚胺和氰酸酯。这些聚合物表现出所需的电绝缘,热性能,耐化学性和所需的机械强度。聚合物作为PWB树脂系统表现能力的两个最重要的度量是介电常数[DK]和耗散因子[DF]。介电常数决定了PWB中电子信号的速度。DF表示电路中信号的介电损耗。两个值都会影响PWB的大小和信号质量。另外,铜导体的尺寸和PWB上的绝缘空间还受DK/DF值的影响。低DK和DF特性将导致PWB中功率损失较低的信号速度更快。因此,具有低DK/DF特性的树脂支持具有近线/导体空间的小型PWB的生产。目前正在研究PWB的Huntsman材料之一是一种新的苯唑嗪。苯佐昔嗪作为产品家族是复杂电子产品的良好候选者,因为它们是一种非卤代系统[没有氯或溴]Ö的高玻璃过渡值Ö表现出低的水分吸收性Ö具有易燃性的耐受能力,它比Epox更好,尽管这种类别的产品均具有良好的电气性能,并且具有良好的电气属性,并且在所有dk and df中都具有df/df/df/df的df/df not/df。当这些材料在≥1GHz的测试时,它们的DK/DF值大大增加。因此,这些系统难以用于最近以较高频率运行的电子产品,我们开发了一种具有电气性能的新实验材料,该材料在Gigahertz范围内保持稳定。2.0一般苯唑嗪化学分配苯酚,甲醛和胺的苯唑嗪化合物的合成已被几组1-5详细研究。
潜在应用。汽车和海洋点火系统中的水分和防尘保护以及密封。电气连接器和端子的水分密封。电连接,电池端子的润滑。滑动 /转弯变量电阻的润滑。金属接触开关的润滑和表面保护