摘要:基于运动想象的脑电解码是脑机接口技术的重要组成部分,是决定脑机接口整体性能的重要指标。由于运动想象脑电特征分析的复杂性,传统的分类模型严重依赖于信号预处理和特征设计阶段。深度学习中的端到端神经网络已经被应用于运动想象脑电的分类任务处理并显示出良好的效果。本研究采用卷积神经网络(CNN)和长短期记忆网络(LSTM)的组合从脑电信号中获取空间信息和时间相关性,跨层连接的使用减少了网络梯度弥散问题,增强了网络模型整体的稳定性。通过融合CNN、BiLSTM和ResNet(本研究中称为CLRNet)对运动想象脑电进行解码,在BCI Competition IV数据集2a上证明了该网络模型的有效性,融合CNN和BiLSTM的网络模型在四类运动想象模式分类中取得了87.0%的准确率。通过加入ResNet进行跨层连接,增强了网络稳定性,进一步提升了2.0%的分类准确率,达到89.0%的分类准确率。实验结果表明CLRNet在运动想象脑电数据集的解码方面具有良好的性能。本研究为脑机接口技术研究中的运动想象脑电解码提供了更好的解决方案。
基于蝙蝠脑电信号分析优化深度学习模型的设计 3 技术 ( Zhang 等 2018 ) 、EEG-AR 模型 ( Ouyang 等 2020 )、卷积神经系统
摘要:利用左右脑优势理论可以确定左脑和右脑人群的一些特征。它可以帮助制定大脑平衡教育主题的培训大纲。在执行任何动作时,人的注意力或专注力至关重要。本文将使用脑电图 (EEG) 数据检查左脑和右脑优势患者的注意力水平。可以使用 EEG 波跟踪和记录大脑活动。人脑的思考和注意力会导致脑电波在不同频带中改变。可以使用基线校正方法清理基于频率的 EEG 信号并提取特征。结果,创建了 EEG 拓扑功率谱密度值。本文的主要目的是比较不同大脑优势的人的注意力水平。相反,EEG 信号可用于预测一个人是左脑还是右脑优势。
摘要:在 COVID-19 大流行期间,在线教育已成为一种重要的教育媒介。尽管在线教育具有诸多优势,但它缺乏面对面的设置,这使得分析学生的互动、理解和困惑程度变得非常困难。本研究利用脑电图 (EEG) 数据为大规模开放在线课程 (MOOC) 平台检测学生的困惑程度。现有的困惑检测方法主要侧重于模型优化,而特征工程研究得不够深入。本研究提出了一种新颖的工程方法,该方法使用基于概率的特征 (PBF) 来提高机器学习模型的效率。PBF 方法利用随机森林 (RF) 和梯度提升机 (GBM) 的概率输出作为特征向量来训练机器学习模型。通过几个带有 EEG 数据的机器学习模型,使用原始特征和 PBF 方法进行了广泛的实验。实验结果表明,通过在 EEG 数据上使用 PBF 方法,可以 100% 准确率地检测困惑的学生。 K 折交叉验证和与现有方法的性能比较进一步证实了结果。
摘要:脑机接口(BCI)在各个领域有着广泛的应用。在基于脑电信号的研究中,信号去噪是必不可少的一步。本文提出了一种基于生成对抗网络(GAN)的去噪方法,对多通道脑电信号进行自动去噪。定义新的损失函数以确保滤波后的信号能够尽可能多地保留原始的有效信息和能量。该模型可以模仿和集成人工去噪方法,减少处理时间,因此可以用于大量数据处理。与其他神经网络去噪模型相比,所提出的模型多了一个判别器,它始终判断噪声是否被滤除。生成器则不断改变去噪方式。为了确保GAN模型稳定地生成脑电信号,提出了一种新的归一化方法,即基于样本熵阈值和能量阈值(SETET)归一化来检查异常信号并限制脑电信号的范围。去噪系统建立后,虽然去噪模型采用不同受试者的数据进行训练,但仍然能够适用于新受试者的数据去噪。本文讨论的实验采用HaLT公开数据集。相关性和均方根误差(RMSE)作为评价标准。结果表明,提出的自动GAN去噪网络达到了与手动混合人工去噪方法相同的性能。此外,GAN网络使去噪过程自动化,大大减少了时间。
摘要 — 上下班是许多人的日常活动,对我们的健康有重大影响。定期通勤可能导致慢性压力,而慢性压力与心理健康不佳、高血压、心率过快和疲惫有关。本研究通过分析脑电波和应用机器学习,实时调查通勤对神经生理和心理的影响。参与者是平均年龄 30 岁的健康志愿者。获取便携式脑电图 (EEG) 数据作为压力水平的衡量标准。在每位参与者上下班途中,使用非侵入式 NeuroSky MindWave 耳机连续 5 次获取 EEG 数据。这种方法可以在通勤期间和之后测量影响。结果表明,无论通勤时间长短,当参与者处于平静或放松状态时,生物信号 alpha 波段超过 beta 波段,而当参与者因通勤而感到压力时,beta 波段高于 alpha 波段。使用前馈神经网络取得了非常有希望的结果,准确率达到 97.5%。这项工作的重点是开发一种智能模型,帮助预测通勤对参与者的影响。此外,从积极和消极情绪时间表获得的结果还表明,参与者在通勤后会经历相当大的压力上升。对于社会行为背后的认知和语义过程的建模,最近的大多数研究项目仍然基于个人,而我们的研究则侧重于将群体作为一个完整群体来处理的方法。这项研究记录了通勤者的体验,特别关注远程医疗传感器中新兴计算技术的使用和局限性。
摘要:早期检测和分类癫痫发作对计算机辅助设备和最新医疗物联网 (IoMT) 设备的分析、监测和诊断大有裨益,这一点怎么强调也不为过。这些应用的成功在很大程度上取决于所采用的检测和分类技术的准确性。多年来,人们研究、提出和开发了多种方法。本文研究了过去十年的各种癫痫发作检测算法和分类,包括传统技术和最新的深度学习算法。它还讨论了癫痫样检测作为实现意识障碍 (DOC) 高级诊断及其理解的步骤之一。对所研究的不同算法进行了性能比较,并探讨了它们的优缺点。从我们的调查来看,最近人们非常关注探索深度学习算法在癫痫发作检测和分类中的有效性,这些算法还用于图像处理和分类等其他领域。混合深度学习也得到了探索,其中 CNN-RNN 最受欢迎。
㉳⬻Ἴ䛿Ⓨヰ⬻Ἴ䛸䛿␗䛺䜚䠈ṇ☜䛺㉳้䛜 ᫂░䛷䛒䜛䛸䛔䛖ၥ㢟䛜䛒䜛䠊䛭䛣䛷䠈ᅗ 2 䛾㘓䝥䝻䝖䝁䝹䛻䛚 䛔䛶䠈⿕㦂⪅䛿⣧㡢䛜㬆䜚⤊䜟䛳䛯┤ᚋ䛻㉳䜢㛤ጞ䛧䛶䛔䜛 䛸௬ᐃ䛧䠈 1 ༢ㄒ䛾㉳㛫䜢 400ms 䛸⪃䛘䠈 0-400ms( ⣧㡢┤ ᚋ :0ms) 䜢ゎᯒ༊㛫䛸䛩䜛䠊 3.2 ⠇䛷ㄝ᫂䛧䛯 6 䛴䛾≉ᚩ㔞䛩䜉 䛶䜢⏝䛔䛯䛯䜑䠈ධຊḟඖᩘ䛿䠈 ( ⥺䝇䝨䜽䝖䝹௨እ䛾 5 䛴䛾≉ ᚩ㔞㽢 21ch 䠇⥺䝇䝨䜽䝖䝹 25 ḟඖ ) 㽢 2( ᖹᆒ䛸ᶆ‽೫ᕪ ) 䛾 260 ḟඖ䛷䛒䜛䠊 10 ྡ䛾⿕㦂⪅䛾ᖹᆒṇゎ⋡䜢ᅗ 6 䛾䛂 0- 400ms ༊㛫䛃䛻♧䛩䠊ᅗ 6 䜘䜚䠈ṇゎ⋡䛿 20% 䜋䛹䛷䛒䜚䠈ㄆ㆑ 䛷䛝䛶䛔䛺䛔䛣䛸䛜䜟䛛䜛䠊 ṇゎ⋡䛜ప䛔ཎᅉ䛾୍䛴䛸䛧䛶䠈ṇ☜䛺㉳༊㛫䛜≉ᐃ䛷 䛝䛶䛔䛺䛔Ⅼ䛜ᣲ䛢䜙䜛䠊䛭䛣䛷䠈㉳⬻Ἴ䛸ྠ䛨䝥䝻䝖䝁䝹 䛷㘓䛧䛯Ⓨヰ⬻Ἴ䛻╔┠䛧䛯䠊ྠ䛨䝥䝻䝖䝁䝹䛷㘓䛧䛶 䛔䜛䛣䛸䛛䜙䠈Ⓨヰ䛸㉳䛾㛤ጞ้䜔⥅⥆㛫䛿ᴫ䛽୍⮴䛩 䜛䛸௬ᐃ䛧䛯䠊䛭䛧䛶Ⓨヰ㛫䜢䜒䛸䛻ゎᯒ༊㛫䜢Ỵᐃ䛩䜜䜀䠈 ㉳༊㛫䛷䛾ㄆ㆑ᐇ㦂䛜⾜䛺䛘䜛䛿䛪䛷䛒䜛䠊௨ୖ䛾䛣䛸䛛䜙䠈 Ⓨヰ⬻Ἴ䜢㘓䛧䛯㝿䛻㘓㡢䛧䛯㡢ኌ䝕䞊䝍䛛䜙ྛ⿕㦂⪅ 䛾ᩘᏐ䛤䛸䛾Ⓨヰ㛫䜢⟬ฟ䛩䜛䠊 ⿕㦂⪅䛤䛸䛾Ⓨヰ㛤ጞ㛫䛾ᖹᆒ䜢ぢ䛶䜏䜛䛸䠈䛹䛾⿕㦂⪅ 䜒 250ms ௨㝆䛻Ⓨヰ䜢㛤ጞ䛧䛶䛚䜚䠈⣧㡢䛾㬆䜚⤊䜟䜚┤ᚋ䛻 Ⓨヰ䜢㛤ጞ䛧䛶䛔䜛⿕㦂⪅䛿䛔䛺䛛䛳䛯䠊䜎䛯䠈⿕㦂⪅䛻䜘䛳 䛶㛤ጞ㛫䛿␗䛺䛳䛶䛔䛯䠊䛥䜙䛻䠈ྠ䛨ᩘᏐ䛻䛚䛡䜛⿕㦂⪅ 䛤䛸䛾Ⓨヰ⥅⥆㛫䛾ᖹᆒ䜢ぢ䛶䜏䜛䛸䠈䛣䛱䜙䜒⿕㦂⪅䛻䜘䛳 䛶␗䛺䜛䛣䛸䛜䜟䛛䛳䛯䠊䛣䛾⤖ᯝ䛛䜙䠈ゎᯒ༊㛫䛸䛧䛶䛔䛯 0- 400ms 䛿ᐇ㝿䛾㉳༊㛫䛸䛝䛟␗䛺䛳䛶䛔䜛ྍ⬟ᛶ䛜㧗䛔䠊 䜘䛳䛶䠈㉳䛾ゎᯒ༊㛫䜢ྛ⿕㦂⪅䛾༢ㄒ䛤䛸䛾Ⓨヰ㛤ጞ 㛫䛸⤊㛫䜢䜒䛸䛻ኚ᭦䛧䠈ᨵ䜑䛶㡢ኌ㉳༢ㄒㄆ㆑ᐇ㦂 䜢⾜䛖䠊
近年来,人工智能和机器学习 (ML) 彻底改变了各个科学技术领域,在计算机视觉、自然语言处理和医疗保健方面取得了重大进步(Esteva 等人,2019 年)。尽管取得了这些进展,但由于大脑活动的复杂性和非平稳性,将这些技术应用于脑电图 (EEG) 信号的分析仍面临独特的挑战。EEG 是实时了解大脑动态的关键工具,常用于临床诊断、认知神经科学和脑机接口(Schomer and Lopes da Silva,2017 年)。然而,EEG 信号的噪声和高维性质使得标准深度学习模型难以有效应用。基础模型(例如基于 Transformer 的架构)在自然语言处理和计算机视觉等领域表现出前所未有的性能(Vaswani,2017 年;Radford 等人,2021 年)对于应对这些挑战大有希望。这些模型在海量数据集上进行预训练,然后针对特定任务进行微调,从而具有广泛的泛化和适应性。然而,它们在脑电图分析中的有效性有限,因为它们往往缺乏捕捉时间精度和生物合理性的机制,而这些对于准确建模脑信号至关重要(Roy et al., 2019)。克服这些限制的一个有希望的方向是将受脑启发的算法融入基础模型。受脑启发的算法,例如脉冲神经网络 (SNN)、分层时间记忆 (HTM) 和生物学上合理的学习机制,如赫布学习,模仿了神经过程的结构和功能(Schmidgall et al., 2024)。这些算法旨在捕捉更类似于实际大脑网络中观察到的时间和空间动态。将这些算法融入基础模型可能会弥合标准深度学习方法与脑电图信号的动态、多维性质之间的差距。因此,在本文中,我们提供了关于如何将脑启发算法与基础模型相结合以增强 EEG 信号分析的观点。我们认为,通过将基础模型的可扩展性和通用性与脑启发算法的时间特异性和生物学合理性相结合,这种混合方法可以解决 EEG 信号处理中的当前局限性。虽然这些方法的整合带来了重大的技术挑战,但它们的协同作用可以为神经科学中更准确、更可解释的 AI 系统提供新的途径。
科学文献中已经通过多种技术广泛分析了与效价/唤醒空间的四个象限相对应的情绪状态的识别。然而,这些方法中的大多数都是基于对每个大脑区域的单独评估,而没有考虑不同区域之间可能存在的相互作用。为了研究这些相互联系,本研究首次计算了称为跨样本熵的功能连接指标,用于分析来自脑电信号的四组情绪的大脑同步。结果报告了中央、顶叶和枕叶区域之间的互连具有很强的同步性,而左额叶和颞叶结构与其他大脑区域之间的相互作用表现出最低的协调性。这些差异对于四组情绪具有统计学意义。所有情绪同时被分类,准确率为 95.43%,超过了以前研究报告的结果。此外,考虑到对应维度的状态,效价和唤醒的高低水平之间的差异也提供了关于不同情绪条件下大脑同步程度的显著发现,以及可能的