1 西里古里理工学院计算机科学工程系-AI 与 ML,西里古里 734009,印度;bishwamail@gmail.com 2 韦洛尔理工学院博帕尔大学计算机科学与工程学院,博帕尔 466114,印度;lokesh.malviya2020@vitbhopal.ac.in(LM);sandip.mal@vitbhopal.ac.in(SM) 3 国家理工学院计算机科学与工程系,巴特那 800001,印度;radhikesh12@gmail.com 4 鲁尔基理工学院土木工程系,鲁尔基 247667,印度;amrendraroy2k8@gmail.com 5 潘迪特·德恩达亚尔能源大学计算机科学与工程系,甘地讷格尔 382426,印度; tanmaybhowmik@gmail.com 6 仁川国立大学土木与环境工程系,韩国仁川 22022 7 仁川国立大学仁川防灾研究中心,韩国仁川 22022 * 通讯地址:jongp24@inu.ac.kr
压力是指身体对任何环境变化做出的生理、情绪和心理反应,需要进行调整,对人类心理产生重大影响。视障人士 (VIP) 的压力尤其难以控制,因为他们在未知情况下很容易感到压力。脑电图 (EEG) 信号可用于检测压力,因为它基本上代表了人类大脑中持续的电信号变化。文献表明,压力检测技术大多基于时域或频域分析。然而,使用时域或频域分析可能不足以提供适当的压力检测结果。因此,本文提出了一种使用经验模态分解 (EMD) 和短期傅里叶变换 (STFT) 从 EEG 信号中提取考虑时空信息的特征的方法。在 EMD 中,信号首先被分解为表示有限数量信号同时保持时域的固有模态函数 (IMF),然后使用 STFT 将时域转换为时频域。采用支持向量机 (SVM) 对陌生室内环境中 VIP 的压力进行分类。将所提方法的性能与最先进的压力检测技术进行了比较。实验结果证明了所提技术优于现有技术
* 通讯作者:sachin.viet@gmail.com,电话:+91-9268793832 摘要 - “癫痫”是一种常见的神经系统大脑疾病,会影响人类生命的任何阶段。全世界约有 1-2% 的人口受到这种主要慢性疾病的影响。在癫痫诊断的几种应用中,脑电图 (EEG) 信号是早期发现癫痫发作的最重要工具。根据癫痫发作,脑电图 (EEG) 信号可分为癫痫性和非癫痫性。最近的研究主要通过两种方法进行了预测和分析癫痫发作的各种可能性:使用信号处理的传统方法和基于深度学习的方法。因此,需要找到一种合适且可靠的方法来检测和分类 EEG 信号中的癫痫发作。由于 EEG 信号本质上非常随机且非线性,因此我们需要一种非线性技术来检查 EEG 信号,从而能够对不同的 EEG 信号(即癫痫信号和非癫痫信号)进行分类。在我们的论文中,我们提出了一种非线性技术,使用递归量化分析方法(缩写为 RQA)来提取 EEG 信号的特征,其参数来自递归图 (RP)。在分析和分类时间序列时,大多数时候会从 EEG 时间序列中提取一些已识别的统计特征集,并将其作为机器学习分类器的输入。我们提出的方法找到了一种使用深度神经网络 (DNN) 对 EEG 信号时间序列进行分类的新颖且合适的方法。因此,使用递归图将 EEG 信号转换为 RGB 图像。我们使用预训练的 DNN 作为 ResNet-50,这是一个深度为 50 层的卷积神经网络,用于从递归图中提取特征。然后我们使用多个机器学习分类器将信号分类为癫痫和非癫痫,并指出 SVM 的准确率最高。本研究论文表明,可以使用深度学习算法通过脑电图信号利用复发图诊断癫痫,这种算法通常用于图像分类挑战。关键词-癫痫;脑电图信号;复发图;深度神经网络;成像时间序列数据 1. 简介大脑是人体的重要器官,负责监测和控制代谢过程。癫痫、缺血性中风和脑肿瘤等脑部疾病可能会损害正常的生物功能 [1]。神经系统疾病影响从婴儿到老年人的所有年龄段的人。这些疾病有几种形式,癫痫在受其影响的人数最多方面位居第四
摘要 — 神经营销是一个新兴领域,它将神经科学与营销相结合,以更好地了解影响消费者决策的因素。该研究提出了一种通过分析脑电图 (EEG) 信号来了解消费者对广告 (ads) 和产品的积极和消极反应的方法。这些信号是使用低成本单电极耳机从 18-22 岁志愿者那里记录下来的。采用朴素贝叶斯 (NB)、支持向量机 (SVM)、k 最近邻和决策树等机器学习方法以及提出的深度学习 (DL) 模型进行了详细的受试者相关 (SD) 和受试者独立 (SI) 分析。SVM 和 NB 对 SD 分析的准确度 (Acc.) 为 0.63。在 SI 分析中,SVM 在广告、产品和基于性别的分析中表现更好。此外,DL 模型的性能与 SVM 相当,尤其是在基于产品和广告的分析中。索引词 —BCI、EEG、神经营销、机器学习、深度学习
1 圣路易斯儿童医院,31-503 克拉科夫,波兰;katarzyna.dylag@dzieciecyszpital.pl (KAD);krasnoludki11a@poczta.onet.pl (BB) 2 克拉科夫雅盖隆大学医学院病理生理学系,31-121 克拉科夫,波兰 3 克拉科夫雅盖隆大学医学院生物信息学和远程医疗系,30-688 克拉科夫,波兰;wiktoria.wieczorek@student.uj.edu.pl (WW); piotr.walecki@uj.edu.pl(PW)4 AGH 科技大学自动控制与机器人系,30-059 克拉科夫,波兰 5 VSB 俄斯特拉发技术大学控制论与生物医学工程系,708 00 俄斯特拉发-波鲁巴,捷克共和国;radek.martinek@vsb.cz 6 奥波莱理工大学电气工程学院,45-758 奥波莱,波兰* 通信地址:bauer@agh.edu.pl(WB);kawala84@gmail.com(AK-S.)† 这些作者对本文的贡献相同。
脑电图(EEG)在临床癫痫治疗中常用于监测癫痫患者脑部电信号的变化。随着信号处理和人工智能技术的发展,人工智能分类方法在癫痫脑电信号的自动识别中发挥着重要作用。但传统分类器容易受到癫痫脑电信号中杂质和噪声的影响。针对这一问题,该文设计了一种抗噪声低秩学习(NRLRL)脑电信号分类算法。NRLRL建立低秩子空间连接原始数据空间与标签空间,充分利用监督信息,考虑样本局部信息的保存性,保证类内紧凑性和类间离散性的低秩表示。将非对称最小二乘支持向量机(aLS-SVM)嵌入到NRLRL的目标函数中。 aLS-SVM基于pinball损失函数寻找两类样本间的最大分位数距离,进一步提高了模型的噪声鲁棒性。在Bonn数据集上设计了多个不同噪声强度的分类实验,实验结果验证了NRLRL算法的有效性。
摘要 — 传统上,抑郁评分是通过贝克抑郁量表 (BDI) 测试来确定的,这是一种定性问卷。通过分析和分类预先记录的脑电图 (EEG) 信号,也可以实现抑郁症的定量评分。在这里,我们更进一步,将原始 EEG 信号应用于提出的混合卷积和时间卷积神经网络 (CNN-TCN),以连续估计 BDI 分数。在本研究中,119 名受试者的 EEG 信号通过连续的闭眼和睁眼间隔被 64 个头皮电极捕获。此外,所有受试者都参加 BDI 测试并确定他们的分数。所提出的 CNN-TCN 在睁眼状态下提供 5.64 ± 1.6 的均方误差 (MSE) 和 1.73 ± 0.27 的平均绝对误差 (MAE),在闭眼状态下提供 9.53 ± 2.94 的 MSE 和 2.32 ± 0.35 的 MAE,这显著超过了最先进的深度网络方法。在另一种方法中,从连续帧的 EEG 信号中提取常规 EEG 特征,并将它们与已知的统计回归方法结合应用于所提出的 CNN-TCN。我们的方法提供了 10.81 ± 5.14 的 MSE 和 2.41 ± 0.59 的 MAE,在统计上优于统计回归方法。此外,使用原始 EEG 的结果明显优于使用 EEG 特征的结果。
技术和生理伪影会干扰脑电图 (EEG) 信号。最常见的伪影之一是受试者眼球运动和眨眼产生的自然活动。眨眼伪影 (EB) 遍布整个头部表面,使 EEG 信号分析变得困难。消除眼电图 (EOG) 伪影的方法已知,例如独立成分分析 (ICA) 和回归。本文旨在实现卷积神经网络 (CNN) 以消除眨眼伪影。为了训练 CNN,提出了一种增强 EEG 信号的方法。将从 CNN 获得的结果与 ICA 和回归方法的结果进行比较,以比较生成的和真实的 EEG 信号。所得结果表明,CNN 在消除眨眼伪影的任务中表现更好,尤其是对于位于头部中央部分的电极。
摘要 辅助机器人在复杂的环境中运行,并有人类在场,但它们之间的交互可能受到多种因素的影响,从而导致不良结果:错误的传感器读数、意外的环境条件或算法错误只是可能出现的场景的几个例子。当用户的安全不仅是一种选择,而且必须得到保证时,一个可行的解决方案是依靠人机回路方法,例如,监控机器人在执行任务期间是否执行了错误操作,或者环境条件是否影响人机交互期间的安全,并相应地提供反馈。本文提出了一种人机回路框架,以实现电动和传感器(智能)轮椅的安全自主导航。在室内场景中,轮椅向所需目的地导航时,轨迹上可能存在的问题(例如障碍物)会在用户注意到时产生脑电图 (EEG) 电位。这些电位可用作导航算法的额外输入,以修改轨迹规划并确保安全。该框架已经通过使用在 ROS 和 Gazebo 环境中实现的轮椅模拟器进行了初步测试:对文献中已知基准的 EEG 信号进行分类,传递到自定义模拟节点,并提供给导航堆栈以执行避障。