摘要。脑机接口使个人能够通过脑电图 (EEG) 信号与设备进行通信,在许多使用脑电波控制单元的应用中都是如此。本文介绍了一种使用 EEG 波通过眨眼和注意力水平信号控制无人机运动的新算法。通过使用支持向量机算法对眨眼进行分类并通过人工神经网络将其转换为 4 位代码,对获得的信号识别进行优化。线性回归法用于将注意力分为具有动态阈值的低级或高级,从而产生 1 位代码。算法中的运动控制由两个控制层构成。第一层提供眨眼信号的控制,第二层提供眨眼和感知到的注意力水平的控制。使用单通道 NeuroSky Mind-Wave 2 设备提取和处理 EEG 信号。所提出的算法已通过对 5 个不同年龄个体的实验测试进行了验证。结果表明,与现有算法相比,该算法具有较高的性能,对 9 个控制命令的准确率为 91.85%。该算法最多可处理 16 个命令,准确率高,适用于许多应用。
摘要 目的:从脑电信号中解码手部运动对上肢障碍患者的康复和辅助至关重要。现有的从脑电信号中解码手部运动的研究很少考虑干扰因素。然而在实际生活中,患者在使用手部运动解码系统时可能会受到干扰。本文旨在研究认知干扰对运动解码性能的影响。方法:首先利用黎曼流形提取仿射不变特征和高斯朴素贝叶斯分类器(RM-GNBC),提出一种从脑电信号中对认知干扰进行手部运动方向鲁棒解码的方法。然后,利用无干扰和有干扰条件下的实验和模拟脑电数据,比较三种解码方法(包括所提出的方法、切向空间线性判别分析(TSLDA)和基线方法))的解码性能。结果:仿真和实验结果表明,基于黎曼流形的方法(即RM-GNBC和TSLDA)在无认知分心和有认知分心条件下的准确率均高于基线方法,且无认知分心和有认知分心条件下解码准确率的下降幅度小于基线方法。此外,RM-GNBC方法在无认知分心和有认知分心条件下的准确率分别比TSLDA方法高6%(配对t检验,p=0.026)和5%(配对t检验,p=0.137)。结论:结果表明,基于黎曼流形的方法对认知分心具有更高的鲁棒性。意义:本研究有助于开发脑机接口(BCI),以改善现实生活中手部残疾患者的康复和辅助,并为研究分心对其他BCI范式的影响开辟了道路。
大脑由数十亿个神经元组成,它们控制着我们的所有行为。在癫痫发作时,大脑信号的模式顺序会发生改变,导致个体大脑出现癫痫样放电。大约 1% 的世界人口患有癫痫,因此需要进行一些研究来帮助诊断和治疗这种疾病。这项工作的目的是开发一种基于机器学习的方法,使用非侵入性脑电图 (EEG) 预测癫痫发作。因此,使用 CHB-MIT 数据库对发作间期和发作前状态进行分类。该算法是使用独立于患者的方法预测多个受试者的癫痫发作而开发的。离散小波变换用于在 5 个级别上对 EEG 信号进行分解,并研究了频谱功率、平均值和标准差作为特征,以分析哪一个会呈现最佳结果,并使用支持向量机 (SVM) 作为分类器。该研究的功率、标准差和平均值特征分别实现了 92.30%、84.60% 和 76.92% 的准确率。
随着脑监测领域的快速发展,对处理相关信号的创新方法的需求日益增加。最近,图信号处理成为逐个信号分析的有力替代方案,它能够处理信号集合。对于自然接受图形表示的脑电图 (EEG) 信号尤其如此,每个电极对应一个图节点。这些信号经常被以重尾统计数据为特征的脉冲噪声破坏,从而导致传统去噪技术失败。为了解决这个问题,我们提出了一种基于分数低阶矩的有效正则化图滤波方法,该方法可以更好地适应重尾统计数据。对真实 EEG 测量结果(包括公开的 P300 数据集和癫痫信号)的实验评估表明,与成熟的 EEG 信号去噪方法相比,我们的方法具有更优异的去噪性能。
摘要 — 神经营销是一个新兴领域,它将神经科学与营销相结合,以更好地了解影响消费者决策的因素。该研究提出了一种通过分析脑电图 (EEG) 信号来了解消费者对广告 (ads) 和产品的积极和消极反应的方法。这些信号是使用低成本单电极耳机从 18-22 岁志愿者那里记录下来的。采用朴素贝叶斯 (NB)、支持向量机 (SVM)、k 最近邻和决策树等机器学习方法以及提出的深度学习 (DL) 模型进行了详细的受试者相关 (SD) 和受试者独立 (SI) 分析。SVM 和 NB 对 SD 分析的准确度 (Acc.) 为 0.63。在 SI 分析中,SVM 在广告、产品和基于性别的分析中表现更好。此外,DL 模型的性能与 SVM 相当,尤其是在基于产品和广告的分析中。索引词 —BCI、EEG、神经营销、机器学习、深度学习
头痛、中风和阿尔茨海默病是人类大脑中的主要问题。在这种疾病中,癫痫是另一种大脑疾病,在人口大国中偶然发生。癫痫是一种影响儿童和成年人的常见神经系统疾病。早期诊断和治疗与降低患病率和死亡率有关。尤其是如果已经确认了癫痫的类型并开始适当的治疗。脑电图仍然是最高质量的诊断方法。脑电图传感器获取的信号是非直接的,其趋势复杂。因此,识别和分离获取的脑电图信号中的瞬间变化是一个非常复杂的过程(Karthik 等人,2020 年)。阴极安装在人头皮上,脑电图信号通过各种通道捕获。从癫痫发作区域捕获的信号称为局灶性脑电图信号,从癫痫发作区域的另一部分捕获的信号称为非局灶性脑电图信号。因此,有必要提出一种自动识别和表征局灶性和非局灶性脑电图信号的系统,以继续癫痫治疗和进一步治疗。癫痫发作会导致大脑区域出现异常功能,这些功能是从大脑中捕获的,局灶性和非局灶性的识别是
摘要:自发现以来,脑电图 (EEG) 一直是识别患者某些健康状况的主要方法。由于可用的分类器类型很多,因此分析方法也同样繁多。在这篇评论中,我们将专门研究为生物工程应用的 EEG 分析而开发的机器学习方法。根据这些信息,我们能够确定每种机器学习方法的总体有效性以及关键特征。我们发现,机器学习中使用的所有主要方法都以某种形式应用于 EEG 分类。范围从朴素贝叶斯到决策树/随机森林,再到支持向量机 (SVM)。监督学习方法的平均准确度高于无监督学习方法。这包括 SVM 和 KNN。虽然每种方法在各自的应用中的准确性都有限,但希望如果正确实施,这些方法的组合具有更高的整体分类准确度。关键词:EEG 分析、EEG 信号、SVM。
人工智能 (AI) 长期以来一直在各个领域兴起。例如,在自动图像和语音识别方面,AI 多年来表现非常出色,并使该领域的现代、更复杂的应用成为可能。出于这个原因,我们 PROCITEC GmbH 不久前开始研究并成功应用 AI 技术,作为我们通信情报 (COMINT) 和无线电侦察解决方案进一步开发的一部分,以满足客户的能力开发 (CAPDEV) 需求。
摘要:稳态视觉诱发电位(SSVEP)作为一种信息丰富的脑电信号,在无线可穿戴设备中脱颖而出。然而,其数据通常非常庞大,占用过多的带宽源,并且在以原始数据形式传输时需要巨大的功耗,因此需要对其进行压缩。本文提出了一种针对SSVEP应用的个性化脑电信号压缩与重构算法。在该算法中,为了实现个性化,首先使用面向BCI应用的开放基准数据库(BETA)对初级人工神经网络(ANN)模型进行预训练。然后,通过增量学习为每个受试者生成自适应ANN模型来压缩他们的个人数据。此外,提出了一种个性化的非均匀量化方法来减少压缩引起的误差。在BETA上进行测试,当压缩率为12.7倍时,识别准确率仅下降3.79%。与不使用ANN、不使用均匀量化的情况相比,所提算法在准确度测试中可使信号损失从50.43%减少到81.08%。
摘要:当前关于癫痫的复杂网络研究大多采用脑电图直接构建静态复杂网络进行分析,忽略了其动态特征。本研究采用滑动窗口法对儿童癫痫患者与儿童对照组睡眠状态下的脑电图构建动态复杂网络,提取动态特征并结合到各类机器学习分类器中探究其分类性能,并比较了静态与动态复杂网络的分类性能。在单变量分析中,静态复杂网络中原本不显著的拓扑特征在动态复杂网络中可以转化为显著特征。在大多数导联间连通性计算方法下,利用动态复杂网络特征进行判别的准确率均高于静态复杂网络特征。特别是在全频段下的相干函数虚部(iCOH)方法中,大多数机器学习分类器的判别准确率均高于95%,且在较高频段(β频段)和全频段的判别准确率高于较低频段。与使用静态复杂网络特征相比,我们提出的方法和框架可以有效地概括脑电信号中更多的时变特征,从而提高机器学习分类器的判别准确率。