(c)当我们将气球充气至其原始半径的两倍时,表面积将增加四倍。列出的量会发生什么变化?电荷不变。与球体半径成反比的电位减小到其值的一半。现在,相同的电荷分布在原始表面积的四倍上,使表面电荷密度降低到原始值的四分之一。与表面电荷密度成正比的电场减小了相同的倍数。
摘要 矿物绝缘金属护套 (MIMS) 贱金属热电偶在其使用寿命内会因高温使用和冶金变化而发生热电漂移,从而引起虚假测量误差。CCPI Europe Limited 和剑桥大学设计了一种带有额外内护套的 MIMS 热电偶,以保护热电元件免受导致热电漂移的影响。六个不同的国家计量机构 (NMI) 使用两种不同的测试方案评估了这些双壁热电偶以及传统的 N 型和 K 型热电偶的性能:1200 ◦ C 下的恒温测试和 300 ◦ C 和 1150 ◦ C 之间的热循环测试。调查表明,在两种测试方案中,与传统热电偶相比,N 型双壁热电偶的热电漂移均显着降低约三倍。 K型双壁热电偶和传统K型热电偶在恒温试验中没有显著差异,K型双壁热电偶在热循环试验中表现出比传统热电偶更大的漂移,但传统K型热电偶的坚固性不如双壁K型热电偶。本文给出的结果代表了对双壁热电偶和传统热电偶的热电稳定性的公正评估,可为潜在的u提供保证
热电偶是高温下最常用的温度计之一。截至今天,只有几种类型的热电偶可以承受以上的温度以上的温度,但是在这些高温下,它们通常的温度测量不确定性约为1%。超过1600℃温度跨度,大多数高温热电偶倾向于在测量中漂移,从而导致其输出错误的读取实际温度的故障且不准确。本论文通过组合两个不同的碳纤维的组合探讨了碳纤维作为用于热电偶的材料。聚丙烯腈(PAN)和人造丝纤维被用至200℃的温度,在其中记录了热电偶的输出电压。该研究显示了在较低温度下使用市售的碳纤维,用于这种类型的热电偶的电动力的有前途且稳定的线性输出。在K型和S型的常用热电偶之间进行了比较,结果表明,碳热电偶在25℃时具有K或S型热电偶的热电效率的21%。对于较高温度下的功能,已经通过文献研究了类似的石墨材料,并发现在2000年以上的较高温度下,热电学稳定性的潜在增加,这表明基于碳的热电偶非常适合高温测量。
摘要:eumelanins是通过其自然前体的氧化聚合获得的天然和合成色素的家族:5,6-二羟基吲哚和其2-羧基衍生物(DHICA)。同时存在离子和电子电荷载体,使这些颜料有望在生物电子中应用。在这项计算研究中,考虑到其许多自由度之间的相互作用,我们构建了Dhica黑色素的结构模型,然后我们检查了代表性低聚物的电子结构。我们发现,沿聚合物链的非呈偶极子将该系统与常规聚合物半导体区分开来,确定其电子结构,对氧化和电荷载体的定位。我们的作品阐明了Dhica黑色素以前未被注意到的特征,不仅与它的根本清除和光保护特性相吻合,而且还开辟了对这类材料中理解和调谐电荷传输的开放新观点。
硅自旋量子比特的最新进展增强了它们作为可扩展量子信息处理平台的地位。随着单量子比特门保真度超过 99.9% [1],双量子比特门保真度不断提高[2-6],以及该领域向大型多量子比特阵列发展的步伐[7,8],开发高效、可扩展的自旋控制所需的工具至关重要[9]。虽然可以利用交流磁场在量子点 (QDs) 中实现单电子自旋共振 [10],但所需的高驱动功率和相关热负荷在技术上具有挑战性,并限制了可达到的拉比频率 [11]。随着自旋系统扩展到几个量子比特以外,最小化耗散和减少量子比特串扰的自旋控制方法对于低温量子信息处理将非常重要 [12]。电偶极自旋共振 (EDSR) 是传统电子自旋共振的一种替代方法。在 EDSR 中,静态梯度磁场和振荡电场用于驱动自旋旋转 [13]。有效磁场梯度的来源因实现方式而异:本征自旋轨道耦合 [14-16]、超精细耦合 [17] 和 g 因子调制 [18] 已用于将电场耦合到自旋态。微磁体产生的非均匀磁场 [19, 20] 已用于为 EDSR 创建合成自旋轨道场,从而实现高保真控制 [1]。方便的是,该磁场梯度产生了一个空间自旋轨道场。
插头或插孔端接 - AC 型 AC 型热电偶配备插头或插孔端接,可快速连接或断开。除了节省时间之外,这种热电偶款式还具有易于使用的优势,即使没有经验的人员也可以轻松使用。此外,热电偶按照 ASTM E 230 规范进行颜色编码,因此您可以轻松确定校准。除 ASTM E 230 R 型和 S 型外,所有 AC 型热电偶的引脚和触点都采用与热电偶相同的合金,因此准确度更高。这种技术可消除由于连接器上的温度梯度而导致的误差。R 型和 S 型连接器采用补偿合金。特点 • 插头和插孔易于连接和断开,为您节省时间 • ASTM 颜色编码连接器可快速识别热电偶校准 • 微型连接器,可提供直径最大 0.125 英寸(3.0 毫米)的热电偶,可用于空间狭小的位置。微型插头允许快速连接到便携式仪器 • 匹配的热电偶合金提供更高的精度 • 适配器确保连接器牢固地安装到护套上,防止连接器转动或扭曲
这两个研讨会,即电偶腐蚀和点蚀,分别于 1974 年 10 月 22-23 日在密歇根州底特律举行的 1974 年材料工程大会上发表。研讨会由美国材料与试验协会金属腐蚀委员会 G-1 实验室腐蚀试验分委员会 GO 1.05 和电偶腐蚀分委员会 GO 1.07 主办。通用汽车公司的 LC Rowe 担任研讨会主席,通用汽车公司的 WD France, Jr. 担任点蚀研讨会联合主席。洛克希德导弹和航天公司的 JF Rynewicz 担任电偶腐蚀研讨会主席,德州仪器公司的 Robert Baboian 担任研讨会联合主席。